Spaces:
Sleeping
Sleeping
switch to emojinator-gpt2-v3
Browse files
app.py
CHANGED
@@ -5,7 +5,11 @@ import torch
|
|
5 |
|
6 |
# Modell und Tokenizer laden
|
7 |
HF_USER = "ai01firebird"
|
8 |
-
MODEL_NAME = "emojinator-gpt2"
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# gpt2 outputs text!
|
11 |
#tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
@@ -15,10 +19,6 @@ MODEL_NAME = "emojinator-gpt2"
|
|
15 |
#tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
16 |
#model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
17 |
|
18 |
-
# fine-tuned
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(f"{HF_USER}/{MODEL_NAME}")
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(f"{HF_USER}/{MODEL_NAME}")
|
21 |
-
|
22 |
# tiny-gpt2 is only 20MB -> NOK, no emojis
|
23 |
#tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
24 |
#model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
@@ -28,7 +28,7 @@ tokenizer = AutoTokenizer.from_pretrained(f"{HF_USER}/{MODEL_NAME}")
|
|
28 |
#model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
29 |
|
30 |
# OLD conversion method
|
31 |
-
def
|
32 |
# Eingabetext bereinigen (optional)
|
33 |
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
34 |
|
@@ -54,7 +54,7 @@ def text_to_emoji_OLD(input_text):
|
|
54 |
return emoji_part
|
55 |
|
56 |
# conversion method
|
57 |
-
def
|
58 |
# Eingabetext bereinigen (optional)
|
59 |
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
60 |
|
@@ -73,6 +73,7 @@ def text_to_emoji(input_text):
|
|
73 |
"Letβs party β ππΊπ\n"
|
74 |
f"{cleaned_text} β"
|
75 |
)
|
|
|
76 |
|
77 |
# Tokenisierung und Generation
|
78 |
inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -93,6 +94,32 @@ def text_to_emoji(input_text):
|
|
93 |
|
94 |
return emoji_part
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
# Gradio UI
|
97 |
iface = gr.Interface(
|
98 |
fn=text_to_emoji,
|
|
|
5 |
|
6 |
# Modell und Tokenizer laden
|
7 |
HF_USER = "ai01firebird"
|
8 |
+
MODEL_NAME = "emojinator-gpt2-v3"
|
9 |
+
|
10 |
+
# fine-tuned
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(f"{HF_USER}/{MODEL_NAME}")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(f"{HF_USER}/{MODEL_NAME}")
|
13 |
|
14 |
# gpt2 outputs text!
|
15 |
#tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
|
19 |
#tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
20 |
#model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
21 |
|
|
|
|
|
|
|
|
|
22 |
# tiny-gpt2 is only 20MB -> NOK, no emojis
|
23 |
#tokenizer = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
24 |
#model = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
|
|
28 |
#model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
29 |
|
30 |
# OLD conversion method
|
31 |
+
def text_to_emoji_OLD_OLD(input_text):
|
32 |
# Eingabetext bereinigen (optional)
|
33 |
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
34 |
|
|
|
54 |
return emoji_part
|
55 |
|
56 |
# conversion method
|
57 |
+
def text_to_emoji_OLD(input_text):
|
58 |
# Eingabetext bereinigen (optional)
|
59 |
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
60 |
|
|
|
73 |
"Letβs party β ππΊπ\n"
|
74 |
f"{cleaned_text} β"
|
75 |
)
|
76 |
+
prompt = f"Text: {input_text}\nEmoji:"
|
77 |
|
78 |
# Tokenisierung und Generation
|
79 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
94 |
|
95 |
return emoji_part
|
96 |
|
97 |
+
# conversion method
|
98 |
+
def text_to_emoji(input_text):
|
99 |
+
# Eingabetext bereinigen (optional)
|
100 |
+
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
101 |
+
|
102 |
+
prompt = f"Text: {cleaned_text}\nEmoji:"
|
103 |
+
|
104 |
+
# Tokenisierung und Generation
|
105 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
106 |
+
outputs = model.generate(
|
107 |
+
**inputs,
|
108 |
+
max_new_tokens=10,
|
109 |
+
do_sample=True,
|
110 |
+
temperature=0.9,
|
111 |
+
top_k=50,
|
112 |
+
pad_token_id=tokenizer.eos_token_id # Prevents warning
|
113 |
+
)
|
114 |
+
|
115 |
+
# Decodieren
|
116 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
117 |
+
|
118 |
+
# Nur den generierten Teil nach dem letzten "β"
|
119 |
+
emoji_part = generated_text.split("β")[-1].strip().split("\n")[0]
|
120 |
+
|
121 |
+
return emoji_part
|
122 |
+
|
123 |
# Gradio UI
|
124 |
iface = gr.Interface(
|
125 |
fn=text_to_emoji,
|