Spaces:
Sleeping
Sleeping
create app.py with
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Modell und Tokenizer laden
|
7 |
+
# distilgpt2 is only 80MB -> no inference model, thus add prompt_prefix or train
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
10 |
+
|
11 |
+
# conversion method
|
12 |
+
def text_to_emoji(input_text):
|
13 |
+
# Eingabetext bereinigen (optional)
|
14 |
+
cleaned_text = re.sub(r"[.,!?;:]", "", input_text)
|
15 |
+
|
16 |
+
# Pattern-based prompt with data from prompt_prefix
|
17 |
+
prompt = "(\n" + "".join(f'"{line}\\n"\n' for line in train_data[0:3]) + f"\"{input_text} →\"" + ")"
|
18 |
+
|
19 |
+
# Tokenisierung und Generation
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
21 |
+
outputs = model.generate(
|
22 |
+
**inputs,
|
23 |
+
max_new_tokens=10,
|
24 |
+
do_sample=True,
|
25 |
+
temperature=0.9,
|
26 |
+
top_k=50,
|
27 |
+
pad_token_id=tokenizer.eos_token_id # Prevents warning
|
28 |
+
)
|
29 |
+
|
30 |
+
# Decodieren
|
31 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# Nur den generierten Teil nach dem letzten "→"
|
34 |
+
emoji_part = generated_text.split("→")[-1].strip().split("\n")[0]
|
35 |
+
|
36 |
+
return emoji_part
|
37 |
+
|
38 |
+
# Gradio UI
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=text_to_emoji,
|
41 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."),
|
42 |
+
outputs="text",
|
43 |
+
title="AI-Powered Emoji Translator",
|
44 |
+
description="Enter a sentence, and the AI will transform it into an emoji-version 🥳"
|
45 |
+
)
|
46 |
+
|
47 |
+
iface.launch()
|