import gradio as gr import re from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Modell und Tokenizer laden tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") def text_to_emoji(text): # remove special characters text_cleaned = re.sub(r"[.,!?;:]", "", text) prompt = f"Convert the following sentence into an emoji-sequence which conveys a similar meaning and return only the emojis, no explanation:\n\n\"{text_cleaned}\"" # Tokenisieren inputs = tokenizer(prompt, return_tensors="pt") # Antwort generieren outputs = model.generate(**inputs, max_new_tokens=25, do_sample=True, temperature=0.7) # Antwort decodieren result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result # Gradio UI iface = gr.Interface( fn=text_to_emoji, inputs=gr.Textbox(lines=2, placeholder="Enter a sentence..."), outputs="text", title="AI-Powered Emoji Translator", description="Enter a sentence, and the AI will transform it into an emoji-version 🥳" ) iface.launch()