Spaces:
Runtime error
Runtime error
import base64 | |
import io | |
from fastapi import FastAPI, UploadFile, File, HTTPException | |
import os | |
import shutil | |
from PIL import Image | |
from fastapi.responses import JSONResponse | |
from semantic_seg_model import segmentation_inference | |
from similarity_inference import similarity_inference | |
import json | |
from gradio_client import Client, file | |
app = FastAPI() | |
## Initialize the pipeline | |
input_images_dir = "image/" | |
temp_processing_dir = input_images_dir + "processed/" | |
# Define a function to handle the POST request at `imageAnalyzer` | |
def imageAnalyzer(image: UploadFile = File(...)): | |
""" | |
This function takes in an image filepath and will return the PolyHaven url addresses of the | |
top k materials similar to the wall, ceiling, and floor. | |
""" | |
try: | |
# load image | |
image_path = os.path.join(input_images_dir, image.filename) | |
with open(image_path, "wb") as buffer: | |
shutil.copyfileobj(image.file, buffer) | |
image = Image.open(image_path) | |
# segment into components | |
segmentation_inference(image, temp_processing_dir) | |
# identify similar materials for each component | |
matching_urls = similarity_inference(temp_processing_dir) | |
print(matching_urls) | |
# Return the urls in a JSON response | |
return matching_urls | |
except Exception as e: | |
print(str(e)) | |
raise HTTPException(status_code=500, detail=str(e)) | |
client = Client("MykolaL/StableDesign") | |
def imageRender(prompt: str, image: UploadFile = File(...)): | |
""" | |
Makes a prediction using the "StableDesign" model hosted on a server. | |
Returns: | |
The prediction result. | |
""" | |
try: | |
image_path = os.path.join(input_images_dir, image.filename) | |
with open(image_path, "wb") as buffer: | |
shutil.copyfileobj(image.file, buffer) | |
image = Image.open(image_path) | |
# Convert PIL image to the required format for the prediction model, if necessary | |
# This example assumes the model accepts PIL images directly | |
result = client.predict( | |
image=file(image_path), | |
text=prompt, | |
num_steps=50, | |
guidance_scale=10, | |
seed=1111664444, | |
strength=0.9, | |
a_prompt="interior design, 4K, high resolution, photorealistic", | |
n_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner", | |
img_size=768, | |
api_name="/on_submit" | |
) | |
image_path = result | |
if not os.path.exists(image_path): | |
raise HTTPException(status_code=404, detail="Image not found") | |
# Open the image file and convert it to base64 | |
with open(image_path, "rb") as img_file: | |
base64_str = base64.b64encode(img_file.read()).decode('utf-8') | |
return JSONResponse(content={"image": base64_str}, status_code=200) | |
except Exception as e: | |
print(str(e)) | |
raise HTTPException(status_code=500, detail=str(e)) | |
def test(): | |
return {"Hello": "World"} |