Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,049 Bytes
e9706fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from __future__ import annotations
import os
import pathlib
from typing import Any, Dict
import gradio as gr
import numpy as np
import torch
# from seamless_communication.inference import Translator
import torchaudio
# from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from huggingface_hub import snapshot_download
from transformers import (
SeamlessM4TFeatureExtractor,
SeamlessM4TTokenizer,
SeamlessM4Tv2ForSpeechToText,
)
from lang_list import (
ASR_TARGET_LANGUAGE_NAMES,
LANGUAGE_NAME_TO_CODE,
S2ST_TARGET_LANGUAGE_NAMES,
S2TT_TARGET_LANGUAGE_NAMES,
T2ST_TARGET_LANGUAGE_NAMES,
# T2TT_TARGET_LANGUAGE_NAMES,
TEXT_SOURCE_LANGUAGE_NAMES,
)
DESCRIPTION = """\
# SeamlessM4T
[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models. The model is also in use on the
[SeamlessM4T demo website](https://seamless.metademolab.com/m4t?utm_source=huggingface&utm_medium=web&utm_campaign=seamless&utm_content=m4tspace).
"""
hf_token = os.getenv("HF_TOKEN")
model = SeamlessM4Tv2ForSpeechToText.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", torch_dtype=torch.float16, token=hf_token).to("cuda")
processor = SeamlessM4TFeatureExtractor.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", token=hf_token)
tokenizer = SeamlessM4TTokenizer.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", token=hf_token)
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
DEFAULT_TARGET_LANGUAGE = "Hindi"
if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
def preprocess_audio(input_audio: str) -> None:
arr, org_sr = torchaudio.load(input_audio)
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
if new_arr.shape[1] > max_length:
new_arr = new_arr[:, :max_length]
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
# preprocess_audio(input_audio)
# source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
input_audio, orig_freq = torchaudio.load(input_audio)
input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device="cuda",dtype=torch.float16)
text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()
return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)
def run_asr(input_audio: str, target_language: str) -> str:
# preprocess_audio(input_audio)
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
input_audio, orig_freq = torchaudio.load(input_audio)
input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device="cuda",dtype=torch.float16)
text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()
return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)
with gr.Blocks() as demo_s2st:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
source_language = gr.Dropdown(
label="Source language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=S2ST_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
with gr.Group():
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
output_text = gr.Textbox(label="Translated text")
with gr.Blocks() as demo_s2tt:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
source_language = gr.Dropdown(
label="Source language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=S2TT_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/Bengali.wav", "Bengali", "English"],
["assets/Gujarati.wav", "Gujarati", "Hindi"],
["assets/Punjabi.wav", "Punjabi", "Hindi"],
],
inputs=[input_audio, source_language, target_language],
outputs=output_text,
fn=run_s2tt,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_s2tt,
inputs=[input_audio, source_language, target_language],
outputs=output_text,
api_name="s2tt",
)
with gr.Blocks() as demo_t2st:
with gr.Row():
with gr.Column():
with gr.Group():
input_text = gr.Textbox(label="Input text")
with gr.Row():
source_language = gr.Dropdown(
label="Source language",
choices=TEXT_SOURCE_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=T2ST_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
with gr.Group():
output_audio = gr.Audio(
label="Translated speech",
autoplay=False,
streaming=False,
type="numpy",
)
output_text = gr.Textbox(label="Translated text")
with gr.Blocks() as demo_asr:
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
target_language = gr.Dropdown(
label="Target language",
choices=ASR_TARGET_LANGUAGE_NAMES,
value=DEFAULT_TARGET_LANGUAGE,
)
btn = gr.Button("Translate")
with gr.Column():
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/Bengali.wav", "Bengali", "English"],
["assets/Gujarati.wav", "Gujarati", "Hindi"],
["assets/Punjabi.wav", "Punjabi", "Hindi"],
],
inputs=[input_audio, target_language],
outputs=output_text,
fn=run_asr,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run_asr,
inputs=[input_audio, target_language],
outputs=output_text,
api_name="asr",
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Tabs():
# with gr.Tab(label="S2ST"):
# demo_s2st.render()
with gr.Tab(label="S2TT"):
demo_s2tt.render()
# with gr.Tab(label="T2ST"):
# demo_t2st.render()
# with gr.Tab(label="T2TT"):
# demo_t2tt.render()
with gr.Tab(label="ASR"):
demo_asr.render()
if __name__ == "__main__":
demo.queue(max_size=50).launch()
|