File size: 9,049 Bytes
e9706fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from __future__ import annotations

import os
import pathlib
from typing import Any, Dict

import gradio as gr
import numpy as np
import torch

# from seamless_communication.inference import Translator
import torchaudio

# from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from huggingface_hub import snapshot_download
from transformers import (
    SeamlessM4TFeatureExtractor,
    SeamlessM4TTokenizer,
    SeamlessM4Tv2ForSpeechToText,
)

from lang_list import (
    ASR_TARGET_LANGUAGE_NAMES,
    LANGUAGE_NAME_TO_CODE,
    S2ST_TARGET_LANGUAGE_NAMES,
    S2TT_TARGET_LANGUAGE_NAMES,
    T2ST_TARGET_LANGUAGE_NAMES,
    # T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)


DESCRIPTION = """\
# SeamlessM4T

[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models. The model is also in use on the
[SeamlessM4T demo website](https://seamless.metademolab.com/m4t?utm_source=huggingface&utm_medium=web&utm_campaign=seamless&utm_content=m4tspace).
"""

hf_token = os.getenv("HF_TOKEN")

model = SeamlessM4Tv2ForSpeechToText.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", torch_dtype=torch.float16, token=hf_token).to("cuda")
processor = SeamlessM4TFeatureExtractor.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", token=hf_token)
tokenizer = SeamlessM4TTokenizer.from_pretrained("ai4bharat/seamless-m4t-v2-large-stt", token=hf_token)

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()

AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "Hindi"

if torch.cuda.is_available():
    device = torch.device("cuda:0")
    dtype = torch.float16
else:
    device = torch.device("cpu")
    dtype = torch.float32





def preprocess_audio(input_audio: str) -> None:
    arr, org_sr = torchaudio.load(input_audio)
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
    if new_arr.shape[1] > max_length:
        new_arr = new_arr[:, :max_length]
        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
    torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))


def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
    # preprocess_audio(input_audio)
    # source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    input_audio, orig_freq = torchaudio.load(input_audio)
    input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
    audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device="cuda",dtype=torch.float16)

    text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()

    return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)


def run_asr(input_audio: str, target_language: str) -> str:
    # preprocess_audio(input_audio)
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    input_audio, orig_freq = torchaudio.load(input_audio)
    input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
    audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device="cuda",dtype=torch.float16)

    text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()

    return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)



with gr.Blocks() as demo_s2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                source_language = gr.Dropdown(
                    label="Source language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value="English",
                )
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2ST_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")

with gr.Blocks() as demo_s2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                source_language = gr.Dropdown(
                    label="Source language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value="English",
                )
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2TT_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, source_language, target_language],
        outputs=output_text,
        fn=run_s2tt,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_s2tt,
        inputs=[input_audio, source_language, target_language],
        outputs=output_text,
        api_name="s2tt",
    )

with gr.Blocks() as demo_t2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_text = gr.Textbox(label="Input text")
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="English",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2ST_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")



with gr.Blocks() as demo_asr:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_asr,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_asr,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="asr",
    )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Tabs():
        # with gr.Tab(label="S2ST"):
        #     demo_s2st.render()
        with gr.Tab(label="S2TT"):
            demo_s2tt.render()
        # with gr.Tab(label="T2ST"):
        #     demo_t2st.render()
        # with gr.Tab(label="T2TT"):
        #     demo_t2tt.render()
        with gr.Tab(label="ASR"):
            demo_asr.render()


if __name__ == "__main__":
    demo.queue(max_size=50).launch()