Spaces:
Sleeping
Sleeping
File size: 2,107 Bytes
36fc11b d8edfd0 bd4cf9f fc58a30 7b33127 f2b36f2 414cb3b f2b36f2 7b33127 84c3c63 cdefac5 f1deeaa 0ff8527 ecd8d62 e2c1771 022325f c302b97 2abc03b f2b36f2 a7d861a e2c1771 d8edfd0 568853f 004a7b1 d8edfd0 f2b36f2 6dd1468 73268a8 e857eed bd4cf9f 6534b30 f2b36f2 6517190 f2b36f2 6534b30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
from flask import Flask, render_template
import threading
import asyncio
from openai import OpenAI
# app = Flask(__name__)
# client = OpenAI(
# # This base_url points to the local Llamafile server running on port 8080
# base_url="http://127.0.0.1:8080/v1",
# api_key="sk-no-key-required"
# )
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
bearer = "Bearer " + os.getenv('TOKEN')
headers = {"Authorization": bearer }
print("headers")
print(headers)
app = Flask(__name__)
@app.route('/app')
def server_app():
llamafile = threading.Thread(target=threadserver)
print('This /app will start the llamafile server on thread')
llamafile.start()
return 'llamafile.start()'
@app.route('/')
def server_one():
sourcesim = "Results"
s1 = "Results"
return render_template("similarity_1.html", sourcetxt = sourcesim, s1 = s1 , headertxt = bearer )
# @app.route('/chat', methods=['POST'])
# def chat():
# try:
# user_message = request.json['message']
# completion = client.chat.completions.create(
# model="LLaMA_CPP",
# messages=[
# {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
# {"role": "user", "content": user_message}
# ]
# )
# ai_response = completion.choices[0].message.content
# ai_response = ai_response.replace('</s>', '').strip()
# return jsonify({'response': ai_response})
# except Exception as e:
# print(f"Error: {str(e)}")
# return jsonify({'response': f"Sorry, there was an error processing your request: {str(e)}"}), 500
if __name__ == '__main__':
app.run(debug=True)
def threadserver():
print('hi')
os.system(' ./mxbai-embed-large-v1-f16.llamafile --server --nobrowser')
async def query(data):
response = await requests.post(API_URL, headers=headers, json=data)
return response.json()
|