aibmedia commited on
Commit
dc13f3c
·
verified ·
1 Parent(s): a06fbde

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +2 -55
main.py CHANGED
@@ -21,7 +21,7 @@ headers = {"Authorization": bearer }
21
 
22
  app = Flask(__name__)
23
 
24
- @app.route('/app')
25
  def command_app():
26
  res = tool.run("Obama's first name?")
27
 
@@ -36,7 +36,7 @@ def command_app():
36
  response = requests.post(API_URL, headers=headers, json=payload)
37
  return response.json() + res
38
 
39
- @app.route('/')
40
  def command_server():
41
 
42
  print("command run")
@@ -44,56 +44,3 @@ def command_server():
44
 
45
 
46
 
47
-
48
-
49
-
50
- # import requests
51
-
52
- # app = FastAPI()
53
-
54
- # @app.get("/infer_t5")
55
- # def t5(input):
56
- # return {"output": "-"}
57
-
58
-
59
- # @app.get("/")
60
- # def index():
61
-
62
- # # List of sentences to be processed
63
- # sentences = [
64
- # "Poor beggar of the trans gender community begs for instant coffee",
65
- # "The fish dreamed of escaping the fishbowl and into the toilet where he saw his friend go.",
66
- # "The person box was packed with jelly many dozens of months later.",
67
- # "Gay drinks both instant coffee and energy drink"
68
- # ]
69
-
70
- # # Initializing the Sentence Transformer model using BERT with mean-tokens pooling
71
- # model = SentenceTransformer('bert-base-nli-mean-tokens')
72
-
73
- # # Encoding the sentences to obtain their embeddings
74
- # sentence_embeddings = model.encode(sentences)
75
-
76
- # # Calculating the cosine similarity between the first sentence embedding and the rest of the embeddings
77
- # # The result will be a list of similarity scores between the first sentence and each of the other sentences
78
- # similarity_scores = cosine_similarity([sentence_embeddings[0]], sentence_embeddings[1:])
79
- # return similarity_scores
80
-
81
- # import requests
82
-
83
- # API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
84
- # headers = {"Authorization": "Bearer hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
85
-
86
- # def query(payload):
87
- # response = requests.post(API_URL, headers=headers, json=payload)
88
- # return response.json()
89
-
90
- # output = query({
91
- # "inputs": {
92
- # "source_sentence": "That is a happy person",
93
- # "sentences": [
94
- # "That is a happy dog",
95
- # "That is a very happy person",
96
- # "Today is a sunny day"
97
- # ]
98
- # },
99
- # })
 
21
 
22
  app = Flask(__name__)
23
 
24
+ @app.route('/')
25
  def command_app():
26
  res = tool.run("Obama's first name?")
27
 
 
36
  response = requests.post(API_URL, headers=headers, json=payload)
37
  return response.json() + res
38
 
39
+ @app.route('/app')
40
  def command_server():
41
 
42
  print("command run")
 
44
 
45
 
46