Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,92 +7,26 @@ import cv2
|
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("aico/TrOCR-MNIST")
|
9 |
|
10 |
-
def _group_rectangles(rec):
|
11 |
-
"""
|
12 |
-
Uion intersecting rectangles.
|
13 |
-
Args:
|
14 |
-
rec - list of rectangles in form [x, y, w, h]
|
15 |
-
Return:
|
16 |
-
list of grouped ractangles
|
17 |
-
"""
|
18 |
-
tested = [False for i in range(len(rec))]
|
19 |
-
final = []
|
20 |
-
i = 0
|
21 |
-
while i < len(rec):
|
22 |
-
if not tested[i]:
|
23 |
-
j = i+1
|
24 |
-
while j < len(rec):
|
25 |
-
if not tested[j] and intersect_area(rec[i], rec[j]):
|
26 |
-
rec[i] = union(rec[i], rec[j])
|
27 |
-
tested[j] = True
|
28 |
-
j = i
|
29 |
-
j += 1
|
30 |
-
final += [rec[i]]
|
31 |
-
i += 1
|
32 |
-
|
33 |
-
return final
|
34 |
|
35 |
def process_image(image):
|
36 |
-
|
37 |
-
generated_text_list = []
|
38 |
-
#boundingBoxes_2 = []
|
39 |
#print(np.shape(image))
|
40 |
#print(image)
|
41 |
-
#dim = (28,28)
|
42 |
-
#resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
|
43 |
#rint(image.astype('uint8'))
|
44 |
#cv2.imwrite("image.png",image.astype('uint8'),(28, 28))
|
45 |
-
|
46 |
-
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
47 |
-
#gray = cv2.cvtColor(thresh, cv2.COLOR_BGR2GRAY)
|
48 |
-
|
49 |
-
cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
50 |
-
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
|
51 |
-
(cnts, _) = contours.sort_contours(cnts, method="left-to-right")
|
52 |
-
dim = (28, 28)
|
53 |
-
for c in cnts:
|
54 |
-
area = cv2.contourArea(c)
|
55 |
-
#print(area)
|
56 |
-
#if area < 120:
|
57 |
-
bounding_boxes.append(cv2.boundingRect(c))
|
58 |
-
#print("for loop bb: ",bounding_boxes)
|
59 |
-
|
60 |
-
boundingBoxes_filter = [i for i in bounding_boxes if i != (0 , 0, 128, 128)]
|
61 |
-
|
62 |
-
boundingBoxes = _group_rectangles(boundingBoxes_filter)
|
63 |
-
#print(boundingBoxes)
|
64 |
-
#
|
65 |
-
#print(boundingBoxes_2)
|
66 |
-
for (x, y, w, h) in boundingBoxes:
|
67 |
-
#print(x,y,w,h)
|
68 |
-
ROI = thresh[y:y+h, x:x+w]
|
69 |
-
ROI2 = cv2.bitwise_not(ROI)
|
70 |
-
borderoutput = cv2.copyMakeBorder(ROI2, 30, 30, 30, 30, cv2.BORDER_CONSTANT, value=[0, 0, 0])
|
71 |
-
|
72 |
-
resized = cv2.resize(borderoutput, dim, interpolation = cv2.INTER_AREA)
|
73 |
-
cv2.imwrite('ROI_{}.png'.format(x), resized)
|
74 |
-
#imageinv = cv2.bitwise_not(resized)
|
75 |
-
img = Image.fromarray(resized.astype('uint8')).convert("RGB")
|
76 |
-
|
77 |
-
pixel_values = processor(img, return_tensors="pt").pixel_values
|
78 |
-
generated_ids = model.generate(pixel_values)
|
79 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
80 |
-
#print(generated_text)
|
81 |
-
generated_text_list.append(generated_text)
|
82 |
-
#img = Image.fromarray(image.astype('uint8')).convert("RGB")
|
83 |
#img = Image.open("image.png").convert("RGB")
|
84 |
-
|
85 |
-
|
86 |
# prepare image
|
87 |
-
|
88 |
|
89 |
# generate (no beam search)
|
90 |
-
|
91 |
|
92 |
# decode
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
title = "Interactive demo: Single Digits MNIST"
|
98 |
description = "Aico - University Utrecht"
|
|
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("aico/TrOCR-MNIST")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def process_image(image):
|
12 |
+
|
|
|
|
|
13 |
#print(np.shape(image))
|
14 |
#print(image)
|
|
|
|
|
15 |
#rint(image.astype('uint8'))
|
16 |
#cv2.imwrite("image.png",image.astype('uint8'),(28, 28))
|
17 |
+
img = Image.fromarray(image.astype('uint8')).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
#img = Image.open("image.png").convert("RGB")
|
19 |
+
print(img)
|
|
|
20 |
# prepare image
|
21 |
+
pixel_values = processor(img, return_tensors="pt").pixel_values
|
22 |
|
23 |
# generate (no beam search)
|
24 |
+
generated_ids = model.generate(pixel_values)
|
25 |
|
26 |
# decode
|
27 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
28 |
+
|
29 |
+
return generated_text
|
30 |
|
31 |
title = "Interactive demo: Single Digits MNIST"
|
32 |
description = "Aico - University Utrecht"
|