Spaces:
Sleeping
Sleeping
import gradio as gr | |
from keras.models import load_model | |
from PIL import Image, ImageOps | |
import numpy as np | |
import time | |
import json | |
np.set_printoptions(suppress=True) | |
class AIVisionSystem: | |
def __init__(self, model_path="keras_model.h5", labels_path="labels.txt"): | |
try: | |
# Load the model | |
self.model = load_model(model_path, compile=False) | |
# Load the labels | |
with open(labels_path, "r", encoding="utf-8") as f: | |
self.class_names = f.readlines() | |
print(self.class_names) | |
self.model_loaded = True | |
except Exception as e: | |
print(f"❌ Model loading failed: {e}") | |
self.model_loaded = False | |
self.class_names = [] | |
def preprocess_image(self, image): | |
if image is None: return None | |
image = ImageOps.fit(image.convert("RGB"), (224, 224), Image.Resampling.LANCZOS) | |
image_array = np.asarray(image) | |
return np.expand_dims(image_array, axis=0) | |
def predict(self, image): | |
if not self.model_loaded: | |
fake_predictions = np.random.rand(len(self.class_names)) | |
fake_predictions = fake_predictions / fake_predictions.sum() # Normalize | |
return fake_predictions | |
processed_image = self.preprocess_image(image) | |
if processed_image is None: return None | |
prediction = self.model.predict(processed_image, verbose=0) | |
print(prediction) | |
return prediction[0] | |
def analyze_image(self, image): | |
if image is None: | |
return { | |
"status": "❌ No image detected", | |
"prediction": "", | |
"confidence": 0, | |
"all_predictions": {}, | |
"processing_time": 0 | |
} | |
# Start timing | |
start_time = time.time() | |
# Perform prediction | |
predictions = self.predict(image) | |
if predictions is None: | |
return { | |
"status": "❌ Identification failed", | |
"prediction": "", | |
"confidence": 0, | |
"all_predictions": {}, | |
"processing_time": 0 | |
} | |
# Calculate processing time | |
processing_time = time.time() - start_time | |
# Find the prediction with the highest confidence | |
max_index = np.argmax(predictions) | |
max_confidence = predictions[max_index] | |
predicted_class = self.class_names[max_index].strip() | |
# Clean up class name | |
if len(predicted_class.split(' ', 1)) > 1: | |
class_name = predicted_class.split(' ', 1)[1] | |
else: | |
class_name = predicted_class | |
# Prepare all prediction results | |
all_predictions = {} | |
for i, (class_line, confidence) in enumerate(zip(self.class_names, predictions)): | |
clean_name = class_line.strip() | |
if len(clean_name.split(' ', 1)) > 1: | |
clean_name = clean_name.split(' ', 1)[1] | |
all_predictions[clean_name] = float(confidence) | |
print(f"{clean_name}: {confidence}") | |
return { | |
"status": "✅ Analysis complete", | |
"prediction": class_name, | |
"confidence": float(max_confidence), | |
"all_predictions": all_predictions, | |
"processing_time": processing_time | |
} | |
def process_image(image): | |
result = client.analyze_image(image) | |
# Format the result display | |
if result["confidence"] > 0: | |
status_text = f""" | |
🔍 **AI Analysis Report** | |
**Status**: {result["status"]}<br> | |
**Prediction**: `{result["prediction"]}`<br> | |
**Confidence**: `{result["confidence"]:.2%}`<br> | |
**Processing Time**: `{result["processing_time"]:.3f}s` | |
--- | |
**📊 Detailed Analysis Results:** | |
""" | |
# Add all prediction results | |
sorted_predictions = sorted(result["all_predictions"].items(), key=lambda x: x[1], reverse=True) | |
for class_name, confidence in sorted_predictions: | |
bar_length = int(confidence * 20) # 20 character width progress bar | |
bar = "█" * bar_length + "░" * (20 - bar_length) | |
status_text += f"<br>`{class_name}`: {bar} `{confidence:.1%}`" | |
# Prepare Gradio label format | |
gradio_labels = {name: conf for name, conf in result["all_predictions"].items()} | |
else: | |
status_text = result["status"] | |
gradio_labels = {} | |
return status_text, gradio_labels | |
# Custom CSS styles | |
custom_css = """ | |
/* Main body background */ | |
.gradio-container { | |
background: linear-gradient(135deg, #0c0c0c 0%, #1a1a2e 50%, #16213e 100%) !important; | |
color: #ffffff !important; | |
font-family: 'IBM Plex Mono', monospace !important; | |
} | |
.gradio-container hr { | |
margin: 0 !important; | |
border-color: #8000ff !important; | |
} | |
/* Title style */ | |
.main-header { | |
text-align: center; | |
background: linear-gradient(45deg, #00f5ff, #0080ff, #8000ff); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
background-clip: text; | |
font-size: 3em !important; | |
font-weight: bold !important; | |
text-shadow: 0 0 30px rgba(0, 245, 255, 0.5); | |
margin: 20px 0 !important; | |
animation: glow 2s ease-in-out infinite alternate; | |
} | |
@keyframes glow { | |
from { filter: drop-shadow(0 0 20px #00f5ff); } | |
to { filter: drop_shadow(0 0 30px #8000ff); } | |
} | |
/* Subtitle */ | |
.sub-header { | |
text-align: center; | |
color: #00f5ff !important; | |
font-size: 1.2em !important; | |
margin-bottom: 30px !important; | |
opacity: 0.8; | |
} | |
/* Input area */ | |
.input-section { | |
background: rgba(0, 245, 255, 0.1) !important; | |
border: 2px solid rgba(0, 245, 255, 0.3) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
box-shadow: 0 0 25px rgba(0, 245, 255, 0.2) !important; | |
} | |
/* Output area */ | |
.output-section { | |
background: rgba(128, 0, 255, 0.1) !important; | |
border: 2px solid rgba(128, 0, 255, 0.3) !important; | |
border-radius: 15px !important; | |
padding: 20px !important; | |
box-shadow: 0 0 25px rgba(128, 0, 255, 0.2) !important; | |
} | |
/* Button style */ | |
.gr-button { | |
background: linear-gradient(45deg, #00f5ff, #8000ff) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
border-radius: 25px !important; | |
box-shadow: 0 4px 15px rgba(0, 245, 255, 0.3) !important; | |
transition: all 0.3s ease !important; | |
} | |
.gr-button:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 6px 20px rgba(128, 0, 255, 0.4) !important; | |
} | |
/* Progress bar and labels */ | |
.gr-label { | |
color: #00f5ff !important; | |
font-weight: bold !important; | |
} | |
/* Input box and text area */ | |
.gr-textbox, .gr-markdown { | |
background: rgba(0, 0, 0, 0.5) !important; | |
border: 1px solid rgba(0, 245, 255, 0.3) !important; | |
color: #ffffff !important; | |
border-radius: 10px !important; | |
} | |
/* Image preview */ | |
.gr-image { | |
border: 2px solid rgba(0, 245, 255, 0.3) !important; | |
border-radius: 15px !important; | |
box-shadow: 0 0 20px rgba(0, 245, 255, 0.2) !important; | |
} | |
/* Label display */ | |
.gr-label-list { | |
background: rgba(0, 0, 0, 0.7) !important; | |
border-radius: 10px !important; | |
padding: 15px !important; | |
} | |
/* Flashing animation */ | |
.processing { | |
animation: pulse 1.5s ease-in-out infinite; | |
} | |
@keyframes pulse { | |
0% { opacity: 1; } | |
50% { opacity: 0.5; } | |
100% { opacity: 1; } | |
} | |
/* Sci-fi style background pattern */ | |
body::before { | |
content: ""; | |
position: fixed; | |
top: 0; | |
left: 0; | |
width: 100%; | |
height: 100%; | |
background-image: | |
radial-gradient(circle at 25% 25%, rgba(0, 245, 255, 0.1) 0%, transparent 25%), | |
radial-gradient(circle at 75% 75%, rgba(128, 0, 255, 0.1) 0%, transparent 25%); | |
pointer-events: none; | |
z-index: -1; | |
} | |
""" | |
MODEL_PATH = "keras_model.h5" | |
LABELS_PATH = "labels.txt" | |
# Initialize the AI system | |
client = AIVisionSystem( | |
model_path=MODEL_PATH, | |
labels_path=LABELS_PATH | |
) | |
# Create Gradio interface | |
with gr.Blocks(css=custom_css, title="AI 智慧回收站:次世代垃圾分類系統", theme=gr.themes.Soft(), js=""" | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""") as app: | |
# Title area | |
gr.HTML(""" | |
<div class="main-header"> | |
🤖 AI 智慧回收站:次世代垃圾分類系統 | |
</div> | |
<div class="sub-header"> | |
⚡ Designed by 李冠勳、陳品杉、楊恩婕、王竣毅 ⚡<br> | |
🔬 塑膠 • 金屬 • 紙類 • 玻璃 🔬 | |
</div> | |
""") | |
with gr.Row(): | |
# Left side - Input area | |
with gr.Column(scale=1): | |
gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.5em; margin-bottom: 15px;">📡 INPUT INTERFACE</div>') | |
with gr.Group(elem_classes="input-section"): | |
image_input = gr.Image( | |
label="Image Input Portal", | |
sources=["upload", "webcam", "clipboard"], | |
type="pil", | |
height=300 | |
) | |
analyze_btn = gr.Button( | |
"🚀 INITIATE AI ANALYSIS", | |
variant="primary", | |
size="lg" | |
) | |
# Right side - Output area | |
with gr.Column(scale=1): | |
gr.HTML('<div style="text-align: center; color: #8000ff; font-size: 1.5em; margin-bottom: 15px;">📊 ANALYSIS RESULTS</div>') | |
with gr.Group(elem_classes="output-section"): | |
# Text results | |
result_text = gr.Markdown( | |
label="📋 Detailed Analysis Report", | |
value="🔮 **Awaiting input...** \n\nPlease upload an image to start AI analysis", | |
height=200 | |
) | |
# Label distribution chart | |
result_labels = gr.Label( | |
label="🎯 Confidence Distribution", | |
num_top_classes=5 | |
) | |
gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.2em; margin-top: 30px;">💡 Quick Start Guide</div>') | |
gr.HTML("""<div style="text-align: center; color: #ffffff; opacity: 0.8; margin: 0 0 20px;"> | |
1️⃣ Click the image area above to upload an image<br> | |
2️⃣ Or use the WebCam for live capture<br> | |
3️⃣ Or paste an image directly from the clipboard<br> | |
4️⃣ Click "INITIATE AI ANALYSIS" to start analysis<br> | |
5️⃣ View the real-time analysis results on the right! | |
</div> | |
""") | |
# Set up event handling | |
analyze_btn.click( | |
fn=process_image, | |
inputs=[image_input], | |
outputs=[result_text,result_labels] | |
) | |
# Automatic analysis (when image changes) | |
image_input.change( | |
fn=process_image, | |
inputs=[image_input], | |
outputs=[result_text,result_labels] | |
) | |
app.launch( | |
share=False, # Set to True to generate a public link | |
debug=False, | |
show_error=True, | |
show_api=False | |
) |