Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from keras.models import load_model
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
import time
|
6 |
+
import json
|
7 |
+
|
8 |
+
np.set_printoptions(suppress=True)
|
9 |
+
|
10 |
+
class AIVisionSystem:
|
11 |
+
def __init__(self, model_path="keras_model.h5", labels_path="labels.txt"):
|
12 |
+
try:
|
13 |
+
# Load the model
|
14 |
+
self.model = load_model(model_path, compile=False)
|
15 |
+
|
16 |
+
# Load the labels
|
17 |
+
with open(labels_path, "r", encoding="utf-8") as f:
|
18 |
+
self.class_names = f.readlines()
|
19 |
+
print(self.class_names)
|
20 |
+
|
21 |
+
self.model_loaded = True
|
22 |
+
|
23 |
+
except Exception as e:
|
24 |
+
print(f"❌ Model loading failed: {e}")
|
25 |
+
self.model_loaded = False
|
26 |
+
self.class_names = []
|
27 |
+
|
28 |
+
def preprocess_image(self, image):
|
29 |
+
if image is None: return None
|
30 |
+
|
31 |
+
image = ImageOps.fit(image.convert("RGB"), (224, 224), Image.Resampling.LANCZOS)
|
32 |
+
image_array = np.asarray(image)
|
33 |
+
return np.expand_dims(image_array, axis=0)
|
34 |
+
|
35 |
+
def predict(self, image):
|
36 |
+
if not self.model_loaded:
|
37 |
+
fake_predictions = np.random.rand(len(self.class_names))
|
38 |
+
fake_predictions = fake_predictions / fake_predictions.sum() # Normalize
|
39 |
+
return fake_predictions
|
40 |
+
|
41 |
+
processed_image = self.preprocess_image(image)
|
42 |
+
if processed_image is None: return None
|
43 |
+
|
44 |
+
prediction = self.model.predict(processed_image, verbose=0)
|
45 |
+
print(prediction)
|
46 |
+
|
47 |
+
return prediction[0]
|
48 |
+
|
49 |
+
def analyze_image(self, image):
|
50 |
+
if image is None:
|
51 |
+
return {
|
52 |
+
"status": "❌ No image detected",
|
53 |
+
"prediction": "",
|
54 |
+
"confidence": 0,
|
55 |
+
"all_predictions": {},
|
56 |
+
"processing_time": 0
|
57 |
+
}
|
58 |
+
|
59 |
+
# Start timing
|
60 |
+
start_time = time.time()
|
61 |
+
|
62 |
+
# Perform prediction
|
63 |
+
predictions = self.predict(image)
|
64 |
+
if predictions is None:
|
65 |
+
return {
|
66 |
+
"status": "❌ Identification failed",
|
67 |
+
"prediction": "",
|
68 |
+
"confidence": 0,
|
69 |
+
"all_predictions": {},
|
70 |
+
"processing_time": 0
|
71 |
+
}
|
72 |
+
|
73 |
+
# Calculate processing time
|
74 |
+
processing_time = time.time() - start_time
|
75 |
+
|
76 |
+
# Find the prediction with the highest confidence
|
77 |
+
max_index = np.argmax(predictions)
|
78 |
+
max_confidence = predictions[max_index]
|
79 |
+
predicted_class = self.class_names[max_index].strip()
|
80 |
+
|
81 |
+
# Clean up class name
|
82 |
+
if len(predicted_class.split(' ', 1)) > 1:
|
83 |
+
class_name = predicted_class.split(' ', 1)[1]
|
84 |
+
else:
|
85 |
+
class_name = predicted_class
|
86 |
+
|
87 |
+
# Prepare all prediction results
|
88 |
+
all_predictions = {}
|
89 |
+
for i, (class_line, confidence) in enumerate(zip(self.class_names, predictions)):
|
90 |
+
clean_name = class_line.strip()
|
91 |
+
if len(clean_name.split(' ', 1)) > 1:
|
92 |
+
clean_name = clean_name.split(' ', 1)[1]
|
93 |
+
all_predictions[clean_name] = float(confidence)
|
94 |
+
print(f"{clean_name}: {confidence}")
|
95 |
+
|
96 |
+
return {
|
97 |
+
"status": "✅ Analysis complete",
|
98 |
+
"prediction": class_name,
|
99 |
+
"confidence": float(max_confidence),
|
100 |
+
"all_predictions": all_predictions,
|
101 |
+
"processing_time": processing_time
|
102 |
+
}
|
103 |
+
|
104 |
+
def process_image(image):
|
105 |
+
result = client.analyze_image(image)
|
106 |
+
|
107 |
+
# Format the result display
|
108 |
+
if result["confidence"] > 0:
|
109 |
+
status_text = f"""
|
110 |
+
🔍 **AI Analysis Report**
|
111 |
+
|
112 |
+
**Status**: {result["status"]}<br>
|
113 |
+
**Prediction**: `{result["prediction"]}`<br>
|
114 |
+
**Confidence**: `{result["confidence"]:.2%}`<br>
|
115 |
+
**Processing Time**: `{result["processing_time"]:.3f}s`
|
116 |
+
|
117 |
+
---
|
118 |
+
|
119 |
+
**📊 Detailed Analysis Results:**
|
120 |
+
"""
|
121 |
+
|
122 |
+
# Add all prediction results
|
123 |
+
sorted_predictions = sorted(result["all_predictions"].items(), key=lambda x: x[1], reverse=True)
|
124 |
+
|
125 |
+
for class_name, confidence in sorted_predictions:
|
126 |
+
bar_length = int(confidence * 20) # 20 character width progress bar
|
127 |
+
bar = "█" * bar_length + "░" * (20 - bar_length)
|
128 |
+
status_text += f"<br>`{class_name}`: {bar} `{confidence:.1%}`"
|
129 |
+
|
130 |
+
# Prepare Gradio label format
|
131 |
+
gradio_labels = {name: conf for name, conf in result["all_predictions"].items()}
|
132 |
+
|
133 |
+
else:
|
134 |
+
status_text = result["status"]
|
135 |
+
gradio_labels = {}
|
136 |
+
|
137 |
+
return status_text, gradio_labels
|
138 |
+
|
139 |
+
# Custom CSS styles
|
140 |
+
custom_css = """
|
141 |
+
/* Main body background */
|
142 |
+
.gradio-container {
|
143 |
+
background: linear-gradient(135deg, #0c0c0c 0%, #1a1a2e 50%, #16213e 100%) !important;
|
144 |
+
color: #ffffff !important;
|
145 |
+
font-family: 'IBM Plex Mono', monospace !important;
|
146 |
+
}
|
147 |
+
|
148 |
+
.gradio-container hr {
|
149 |
+
margin: 0 !important;
|
150 |
+
border-color: #8000ff !important;
|
151 |
+
}
|
152 |
+
|
153 |
+
/* Title style */
|
154 |
+
.main-header {
|
155 |
+
text-align: center;
|
156 |
+
background: linear-gradient(45deg, #00f5ff, #0080ff, #8000ff);
|
157 |
+
-webkit-background-clip: text;
|
158 |
+
-webkit-text-fill-color: transparent;
|
159 |
+
background-clip: text;
|
160 |
+
font-size: 3em !important;
|
161 |
+
font-weight: bold !important;
|
162 |
+
text-shadow: 0 0 30px rgba(0, 245, 255, 0.5);
|
163 |
+
margin: 20px 0 !important;
|
164 |
+
animation: glow 2s ease-in-out infinite alternate;
|
165 |
+
}
|
166 |
+
|
167 |
+
@keyframes glow {
|
168 |
+
from { filter: drop-shadow(0 0 20px #00f5ff); }
|
169 |
+
to { filter: drop_shadow(0 0 30px #8000ff); }
|
170 |
+
}
|
171 |
+
|
172 |
+
/* Subtitle */
|
173 |
+
.sub-header {
|
174 |
+
text-align: center;
|
175 |
+
color: #00f5ff !important;
|
176 |
+
font-size: 1.2em !important;
|
177 |
+
margin-bottom: 30px !important;
|
178 |
+
opacity: 0.8;
|
179 |
+
}
|
180 |
+
|
181 |
+
/* Input area */
|
182 |
+
.input-section {
|
183 |
+
background: rgba(0, 245, 255, 0.1) !important;
|
184 |
+
border: 2px solid rgba(0, 245, 255, 0.3) !important;
|
185 |
+
border-radius: 15px !important;
|
186 |
+
padding: 20px !important;
|
187 |
+
box-shadow: 0 0 25px rgba(0, 245, 255, 0.2) !important;
|
188 |
+
}
|
189 |
+
|
190 |
+
/* Output area */
|
191 |
+
.output-section {
|
192 |
+
background: rgba(128, 0, 255, 0.1) !important;
|
193 |
+
border: 2px solid rgba(128, 0, 255, 0.3) !important;
|
194 |
+
border-radius: 15px !important;
|
195 |
+
padding: 20px !important;
|
196 |
+
box-shadow: 0 0 25px rgba(128, 0, 255, 0.2) !important;
|
197 |
+
}
|
198 |
+
|
199 |
+
/* Button style */
|
200 |
+
.gr-button {
|
201 |
+
background: linear-gradient(45deg, #00f5ff, #8000ff) !important;
|
202 |
+
border: none !important;
|
203 |
+
color: white !important;
|
204 |
+
font-weight: bold !important;
|
205 |
+
border-radius: 25px !important;
|
206 |
+
box-shadow: 0 4px 15px rgba(0, 245, 255, 0.3) !important;
|
207 |
+
transition: all 0.3s ease !important;
|
208 |
+
}
|
209 |
+
|
210 |
+
.gr-button:hover {
|
211 |
+
transform: translateY(-2px) !important;
|
212 |
+
box-shadow: 0 6px 20px rgba(128, 0, 255, 0.4) !important;
|
213 |
+
}
|
214 |
+
|
215 |
+
/* Progress bar and labels */
|
216 |
+
.gr-label {
|
217 |
+
color: #00f5ff !important;
|
218 |
+
font-weight: bold !important;
|
219 |
+
}
|
220 |
+
|
221 |
+
/* Input box and text area */
|
222 |
+
.gr-textbox, .gr-markdown {
|
223 |
+
background: rgba(0, 0, 0, 0.5) !important;
|
224 |
+
border: 1px solid rgba(0, 245, 255, 0.3) !important;
|
225 |
+
color: #ffffff !important;
|
226 |
+
border-radius: 10px !important;
|
227 |
+
}
|
228 |
+
|
229 |
+
/* Image preview */
|
230 |
+
.gr-image {
|
231 |
+
border: 2px solid rgba(0, 245, 255, 0.3) !important;
|
232 |
+
border-radius: 15px !important;
|
233 |
+
box-shadow: 0 0 20px rgba(0, 245, 255, 0.2) !important;
|
234 |
+
}
|
235 |
+
|
236 |
+
/* Label display */
|
237 |
+
.gr-label-list {
|
238 |
+
background: rgba(0, 0, 0, 0.7) !important;
|
239 |
+
border-radius: 10px !important;
|
240 |
+
padding: 15px !important;
|
241 |
+
}
|
242 |
+
|
243 |
+
/* Flashing animation */
|
244 |
+
.processing {
|
245 |
+
animation: pulse 1.5s ease-in-out infinite;
|
246 |
+
}
|
247 |
+
|
248 |
+
@keyframes pulse {
|
249 |
+
0% { opacity: 1; }
|
250 |
+
50% { opacity: 0.5; }
|
251 |
+
100% { opacity: 1; }
|
252 |
+
}
|
253 |
+
|
254 |
+
/* Sci-fi style background pattern */
|
255 |
+
body::before {
|
256 |
+
content: "";
|
257 |
+
position: fixed;
|
258 |
+
top: 0;
|
259 |
+
left: 0;
|
260 |
+
width: 100%;
|
261 |
+
height: 100%;
|
262 |
+
background-image:
|
263 |
+
radial-gradient(circle at 25% 25%, rgba(0, 245, 255, 0.1) 0%, transparent 25%),
|
264 |
+
radial-gradient(circle at 75% 75%, rgba(128, 0, 255, 0.1) 0%, transparent 25%);
|
265 |
+
pointer-events: none;
|
266 |
+
z-index: -1;
|
267 |
+
}
|
268 |
+
"""
|
269 |
+
|
270 |
+
MODEL_PATH = "keras_model.h5"
|
271 |
+
LABELS_PATH = "labels.txt"
|
272 |
+
|
273 |
+
# Initialize the AI system
|
274 |
+
client = AIVisionSystem(
|
275 |
+
model_path=MODEL_PATH,
|
276 |
+
labels_path=LABELS_PATH
|
277 |
+
)
|
278 |
+
|
279 |
+
# Create Gradio interface
|
280 |
+
with gr.Blocks(css=custom_css, title="垃圾分類系統", theme=gr.themes.Soft()) as app:
|
281 |
+
# Title area
|
282 |
+
gr.HTML("""
|
283 |
+
<div class="main-header">
|
284 |
+
🤖 垃圾分類系統
|
285 |
+
</div>
|
286 |
+
<div class="sub-header">
|
287 |
+
⚡ Designed by 李O勳、陳O杉、楊O婕、王O毅 ⚡<br>
|
288 |
+
🔬 塑膠 • 金屬 • 紙類 • 玻璃 🔬
|
289 |
+
</div>
|
290 |
+
""")
|
291 |
+
|
292 |
+
with gr.Row():
|
293 |
+
# Left side - Input area
|
294 |
+
with gr.Column(scale=1):
|
295 |
+
gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.5em; margin-bottom: 15px;">📡 INPUT INTERFACE</div>')
|
296 |
+
|
297 |
+
with gr.Group(elem_classes="input-section"):
|
298 |
+
image_input = gr.Image(
|
299 |
+
label="Image Input Portal",
|
300 |
+
sources=["upload", "webcam", "clipboard"],
|
301 |
+
type="pil",
|
302 |
+
height=300
|
303 |
+
)
|
304 |
+
|
305 |
+
analyze_btn = gr.Button(
|
306 |
+
"🚀 INITIATE AI ANALYSIS",
|
307 |
+
variant="primary",
|
308 |
+
size="lg"
|
309 |
+
)
|
310 |
+
|
311 |
+
# Right side - Output area
|
312 |
+
with gr.Column(scale=1):
|
313 |
+
gr.HTML('<div style="text-align: center; color: #8000ff; font-size: 1.5em; margin-bottom: 15px;">📊 ANALYSIS RESULTS</div>')
|
314 |
+
|
315 |
+
with gr.Group(elem_classes="output-section"):
|
316 |
+
# Text results
|
317 |
+
result_text = gr.Markdown(
|
318 |
+
label="📋 Detailed Analysis Report",
|
319 |
+
value="🔮 **Awaiting input...** \n\nPlease upload an image to start AI analysis",
|
320 |
+
height=200
|
321 |
+
)
|
322 |
+
|
323 |
+
# Label distribution chart
|
324 |
+
result_labels = gr.Label(
|
325 |
+
label="🎯 Confidence Distribution",
|
326 |
+
num_top_classes=5
|
327 |
+
)
|
328 |
+
|
329 |
+
gr.HTML('<div style="text-align: center; color: #00f5ff; font-size: 1.2em; margin-top: 30px;">💡 Quick Start Guide</div>')
|
330 |
+
gr.HTML("""<div style="text-align: center; color: #ffffff; opacity: 0.8; margin: 0 0 20px;">
|
331 |
+
1️⃣ Click the image area above to upload an image<br>
|
332 |
+
2️⃣ Or use the WebCam for live capture<br>
|
333 |
+
3️⃣ Or paste an image directly from the clipboard<br>
|
334 |
+
4️⃣ Click "INITIATE AI ANALYSIS" to start analysis<br>
|
335 |
+
5️⃣ View the real-time analysis results on the right!
|
336 |
+
</div>
|
337 |
+
""")
|
338 |
+
|
339 |
+
# Set up event handling
|
340 |
+
analyze_btn.click(
|
341 |
+
fn=process_image,
|
342 |
+
inputs=[image_input],
|
343 |
+
outputs=[result_text,result_labels]
|
344 |
+
)
|
345 |
+
|
346 |
+
# Automatic analysis (when image changes)
|
347 |
+
image_input.change(
|
348 |
+
fn=process_image,
|
349 |
+
inputs=[image_input],
|
350 |
+
outputs=[result_text,result_labels]
|
351 |
+
)
|
352 |
+
|
353 |
+
app.launch(
|
354 |
+
share=False, # Set to True to generate a public link
|
355 |
+
debug=False,
|
356 |
+
show_error=True,
|
357 |
+
show_api=False
|
358 |
+
)
|