File size: 16,661 Bytes
7661ee6
b257d13
 
 
ff88f18
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
22c2bd2
b257d13
 
 
 
 
 
 
 
 
 
ff88f18
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c2bd2
08210c1
b257d13
 
 
 
 
 
 
 
 
 
22c2bd2
08210c1
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c2bd2
08210c1
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f7684
4517269
 
 
 
b318e94
 
 
 
 
 
 
 
 
 
a4f7684
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb7dc3
b257d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from transformers import pipeline
import numpy as np
from tqdm.auto import tqdm
import warnings
import os
from datetime import datetime, timedelta
from scipy.stats import pearsonr
import ast 
warnings.simplefilter(action='ignore', category=FutureWarning)

DEVELOPER_NAME = "汪于捷、李哲弘、黃千宥、陳奕瑄、洪寓澤"

NEWS_CSV_PATH = 'cryptonews.csv'
BTC_CSV_PATH = 'BTC.csv'
PROCESSED_DATA_PATH = 'processed_btc_sentiment_data.csv'
PLOTLY_TEMPLATE = "plotly_dark"
SENTIMENT_PIPELINE = None

def initialize_pipeline():
    """載入情緒分析模型,只在需要時執行一次。"""
    global SENTIMENT_PIPELINE
    if SENTIMENT_PIPELINE is None:
        try:
            print("⏳ 正在載入情緒分析模型 (Hugging Face)...")
            MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
            SENTIMENT_PIPELINE = pipeline(
                "sentiment-analysis", model=MODEL_NAME, tokenizer=MODEL_NAME, device=-1
            )
            print("✅ 模型載入成功!")
        except Exception as e:
            print(f"❌ 載入模型時發生錯誤: {e}")
            SENTIMENT_PIPELINE = None

def safe_literal_eval(val):
    """安全地解析字串,如果失敗則回傳空字典。"""
    try:
        return ast.literal_eval(val)
    except (ValueError, SyntaxError):
        return {}

def preprocess_and_cache_data():
    """
    執行一次性的資料預處理,分析來源為新聞標題(title)與內文(text)的組合。
    """
    if not os.path.exists(NEWS_CSV_PATH) or not os.path.exists(BTC_CSV_PATH):
        raise FileNotFoundError(f"請確認 '{NEWS_CSV_PATH}' 和 '{BTC_CSV_PATH}' 檔案存在。")

    initialize_pipeline()
    if SENTIMENT_PIPELINE is None:
        raise RuntimeError("情緒分析模型未能成功初始化。")

    print(f"⏳ 正在讀取原始資料: '{NEWS_CSV_PATH}'...")
    news_df = pd.read_csv(NEWS_CSV_PATH)
    news_df.dropna(subset=['title', 'text', 'sentiment'], inplace=True)
    news_df['date'] = pd.to_datetime(news_df['date'], errors='coerce').dt.date
    news_df.dropna(subset=['date'], inplace=True)

    print("⏳ 正在合併新聞標題與內文...")
    news_df['full_text'] = news_df['title'] + ". " + news_df['text']

    print("⏳ 正在對新聞完整內容 (標題+內文) 進行模型情緒分析...")
    texts_to_analyze = news_df['full_text'].tolist()
    sentiments_model = SENTIMENT_PIPELINE(
        texts_to_analyze, 
        batch_size=256, 
        truncation=True, 
        max_length=512
    )
    score_map_model = {'LABEL_2': 1, 'LABEL_1': 0, 'LABEL_0': -1}
    news_df['model_sentiment_score'] = [score_map_model.get(s['label'], 0) for s in sentiments_model]

    print("⏳ 正在解析預存的情緒欄位 (class, polarity, subjectivity)...")
    sentiment_dicts = news_df['sentiment'].apply(safe_literal_eval)
    
    class_score_map = {'positive': 1, 'neutral': 0, 'negative': -1}
    news_df['class_sentiment_score'] = sentiment_dicts.apply(lambda x: class_score_map.get(x.get('class', 'neutral'), 0))
    
    news_df['polarity'] = sentiment_dicts.apply(lambda x: x.get('polarity', 0.0))
    news_df['subjectivity'] = sentiment_dicts.apply(lambda x: x.get('subjectivity', 0.0))

    print("⏳ 正在計算每日平均情緒指標...")
    daily_metrics = news_df.groupby('date').agg(
        avg_model_sentiment=('model_sentiment_score', 'mean'),
        avg_class_sentiment=('class_sentiment_score', 'mean'),
        avg_polarity=('polarity', 'mean'),
        avg_subjectivity=('subjectivity', 'mean')
    ).reset_index()

    print(f"⏳ 正在讀取比特幣價格資料: '{BTC_CSV_PATH}'...")
    btc_df = pd.read_csv(BTC_CSV_PATH)
    btc_df['date'] = pd.to_datetime(btc_df['date'], errors='coerce').dt.date
    btc_df['price_change_pct'] = btc_df['close'].pct_change() * 100

    print("⏳ 正在合併所有資料...")
    daily_metrics['date'] = pd.to_datetime(daily_metrics['date'])
    btc_df['date'] = pd.to_datetime(btc_df['date'])
    merged_df = pd.merge(btc_df, daily_metrics, on='date', how='inner')
    
    news_content_df = news_df.groupby('date').agg(
        titles=('title', list),
        texts=('text', list)
    ).reset_index()
    news_content_df['date'] = pd.to_datetime(news_content_df['date'])
    
    final_df = pd.merge(merged_df, news_content_df, on='date', how='left')

    print(f"✅ 資料預處理完成!正在將結果儲存至 '{PROCESSED_DATA_PATH}'...")
    final_df.to_csv(PROCESSED_DATA_PATH, index=False)
    return final_df

def load_data():
    """載入資料,若快取不存在則執行預處理。"""
    if os.path.exists(PROCESSED_DATA_PATH):
        print(f"✅ 發現已處理的資料快取,正在從 '{PROCESSED_DATA_PATH}' 載入...")
        df = pd.read_csv(PROCESSED_DATA_PATH)
        df['date'] = pd.to_datetime(df['date'])
        df['titles'] = df['titles'].apply(ast.literal_eval)
        df['texts'] = df['texts'].apply(ast.literal_eval)
        return df
    else:
        print("⚠️ 未發現已處理的資料,將執行首次預處理...")
        return preprocess_and_cache_data()

df = load_data()
# 確保資料按日期排序
df.sort_values(by='date', inplace=True)
df.set_index('date', inplace=True)

def get_filtered_df(start_date, end_date):
    """根據日期範圍篩選 DataFrame。"""
    if start_date is None or end_date is None:
        return pd.DataFrame()
    return df[(df.index >= pd.to_datetime(start_date)) & (df.index <= pd.to_datetime(end_date))].copy()

def plot_price_and_sentiment(filtered_df, sentiment_col, sentiment_name, color):
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=filtered_df.index, y=filtered_df['close'], name='BTC 收盤價', line=dict(color='deepskyblue'), yaxis='y1'))
    fig.add_trace(go.Scatter(x=filtered_df.index, y=filtered_df[sentiment_col], name=sentiment_name, line=dict(color=color, dash='dash'), yaxis='y2'))
    fig.update_layout(
        # title=f'📈 比特幣價格 vs. {sentiment_name}趨勢',
        xaxis_title='日期',
        yaxis=dict(title='價格 (USD)', color='deepskyblue'),
        yaxis2=dict(title='情緒分數', overlaying='y', side='right', color=color, range=[-1, 1]),
        legend=dict(x=0.01, y=0.99, orientation='h'),
        template=PLOTLY_TEMPLATE, 
        paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0.2)'
    )
    return fig

def plot_subjectivity_trend(filtered_df):
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=filtered_df.index, y=filtered_df['avg_subjectivity'], name='每日新聞主觀性', line=dict(color='lightgreen')))
    fig.update_layout(
        # title='🧐 每日新聞主觀性趨勢',
        xaxis_title='日期',
        yaxis=dict(title='主觀性分數 (0=客觀, 1=主觀)', color='lightgreen', range=[0, 1]),
        template=PLOTLY_TEMPLATE, 
        paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0.2)'
    )
    return fig

def plot_correlation(filtered_df, sentiment_col, lag_days):
    df_corr = filtered_df[[sentiment_col, 'price_change_pct']].copy()
    df_corr['price_change_pct_lagged'] = df_corr['price_change_pct'].shift(-lag_days)
    df_corr.dropna(inplace=True)
    if df_corr.empty or len(df_corr) < 2:
        correlation, p_value = 0, 1
    else:
        correlation, p_value = pearsonr(df_corr[sentiment_col], df_corr['price_change_pct_lagged'])
    fig = go.Figure(data=go.Scatter(x=df_corr[sentiment_col], y=df_corr['price_change_pct_lagged'], mode='markers', marker=dict(color='mediumpurple', opacity=0.7)))
    fig.update_layout(
        title=f'🔗 情緒與 {lag_days} 天後價格變化的關聯性 (相關係數: {correlation:.3f})',
        xaxis_title='每日平均情緒分數', yaxis_title=f'{lag_days} 天後價格變化 (%)',
        template=PLOTLY_TEMPLATE, 
        paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0.2)'
    )
    return fig, correlation, p_value

def get_top_bottom_news(date_obj):
    """
    獲取指定日期的最正面與最負面新聞。
    """
    date_ts = pd.to_datetime(date_obj)
    if date_ts not in df.index: 
        return "<ul><li>無此日期資料</li></ul>", "<ul><li>無此日期資料</li></ul>"
    
    day_data = df.loc[date_ts]
    titles, texts = day_data.get('titles', []), day_data.get('texts', [])
    
    initialize_pipeline()
    if SENTIMENT_PIPELINE is None or not isinstance(titles, list) or not isinstance(texts, list) or len(titles) != len(texts):
        return "<ul><li>模型未載入或新聞資料格式錯誤</li></ul>", "<ul><li>模型未載入或新聞資料格式錯誤</li></ul>"
        
    full_texts_for_day = [f"{title}. {text}" for title, text in zip(titles, texts)]
    if not full_texts_for_day: 
        return "<ul><li>當日無新聞</li></ul>", "<ul><li>當日無新聞</li></ul>"
        
    sentiments = SENTIMENT_PIPELINE(full_texts_for_day, batch_size=8, truncation=True, max_length=512)
    score_map = {'LABEL_2': 1, 'LABEL_1': 0, 'LABEL_0': -1}
    
    scored_titles = []
    for i, sentiment in enumerate(sentiments):
        directional_score = score_map.get(sentiment['label'], 0) * sentiment['score']
        scored_titles.append((titles[i], directional_score))
        
    positive_news = sorted([item for item in scored_titles if item[1] > 0], key=lambda x: x[1], reverse=True)
    negative_news = sorted([item for item in scored_titles if item[1] < 0], key=lambda x: x[1], reverse=False)

    if positive_news:
        top_news_html = "".join([f"<li>{title}</li>" for title, score in positive_news[:3]])
    else:
        top_news_html = "<li>當日無正面情緒新聞</li>"
        
    if negative_news:
        bottom_news_html = "".join([f"<li>{title}</li>" for title, score in negative_news[:3]])
    else:
        bottom_news_html = "<li>當日無負面情緒新聞</li>"
        
    return f"<ul>{top_news_html}</ul>", f"<ul>{bottom_news_html}</ul>"

with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue="sky", 
        secondary_hue="orange", 
        font=["Arial", "sans-serif"]
    ), 
    js="""
function refresh() {
    const url = new URL(window.location);
    if (url.searchParams.get('__theme') !== 'dark') {
        url.searchParams.set('__theme', 'dark');
        window.location.href = url.href;
    }
}
"""
) as app:
    gr.Markdown(f"""<div style='text-align: center; padding: 20px; color: white;'><h1 style='font-size: 3em; color: #00BFFF;'>📈 Crypto Pulse</h1><p style='font-size: 1.2em; color: #A9A9A9;'>比特幣新聞情緒與價格分析儀表板</p><p style='font-size: 0.9em; color: #888;'>Designed by: {DEVELOPER_NAME}</p></div>""")

    max_date_dt = df.index.max()
    # 確保資料數足夠
    if len(df) > 360:
        min_date_dt = df.index[-360]
    else:
        min_date_dt = df.index.min()
    
    with gr.Row():
        start_date_input = gr.DateTime(label="📅 開始日期", type="datetime", value=min_date_dt)
        end_date_input = gr.DateTime(label="📅 結束日期", type="datetime", value=max_date_dt)
    
    with gr.Tabs() as tabs:
        with gr.TabItem("📊 模型情緒總覽", id=0):
            plot_overview = gr.Plot(label="模型情緒 vs. 價格趨勢圖")
            gr.Markdown("此圖展示了由 `twitter-roberta-base-sentiment` 模型分析出的**新聞內容(標題+內文)**情緒分數(右軸)與比特幣價格(左軸)的對比。")

        with gr.TabItem("🔬 多維度情緒分析", id=1):
            gr.Markdown("""
            ### 指標說明
            此處的情緒指標來自資料集 `cryptonews.csv` 中預先計算好的 `sentiment` 欄位。
            * **資料集預設情緒分類**: 將資料集內建的 `positive`, `neutral`, `negative` 類別轉換為 `1, 0, -1` 的數值分數。
            * **情感極性 (Polarity)**: 衡量文本的正面或負面程度。值域從 -1 (非常負面) 到 +1 (非常正面)。
            * **主觀性 (Subjectivity)**: 衡量文本是偏向客觀事實還是主觀意見。值域從 0 (非常客觀) 到 1 (非常主觀)。
            """)
            plot_class_sentiment = gr.Plot(label="資料集預設情緒 vs. 價格趨勢圖")
            plot_polarity = gr.Plot(label="情感極性 vs. 價格趨勢圖")
            plot_subjectivity = gr.Plot(label="新聞主觀性趨勢圖")

        with gr.TabItem("🔍 關聯性深掘", id=2):
            with gr.Row():
                with gr.Column(scale=2, min_width=250):
                    sentiment_type_radio = gr.Radio(
                        ["模型情緒分數", "資料集預設情緒分類", "情感極性 (Polarity)"],
                        label="選擇分析的情緒指標", value="模型情緒分數"
                    )
                    lag_slider = gr.Slider(minimum=0, maximum=14, value=1, step=1, label="🕒 情緒延遲天數 (Lag Days)")
                    correlation_output = gr.Textbox(label="Pearson 相關係數", interactive=False)
                    p_value_output = gr.Textbox(label="P-Value", interactive=False)
                with gr.Column(scale=3):
                    plot_corr = gr.Plot(label="情緒 vs. 價格變化 散點圖")
        
        with gr.TabItem("📰 新聞瀏覽器", id=3):
            gr.Markdown("在此處選擇特定日期,即可查看當天的熱點新聞。")
            news_date_input = gr.DateTime(label="🗓️ 選擇查詢日期", type="datetime", value=max_date_dt)
            with gr.Row():
                gr.Markdown("### 👍 當日最正面新聞 Top 3"); gr.Markdown("### 👎 當日最負面新聞 Top 3")
            with gr.Row():
                top_news_output = gr.HTML(); bottom_news_output = gr.HTML()

    def update_all(start_date, end_date, lag_days, sentiment_type):
        if start_date is None or end_date is None or start_date > end_date:
            gr.Warning("請選擇有效的開始與結束日期。")
            empty_fig = go.Figure()
            return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, "N/A", "N/A"

        start_date, end_date = pd.to_datetime(start_date), pd.to_datetime(end_date)
        filtered_df = get_filtered_df(start_date, end_date)
        if filtered_df.empty:
            gr.Warning("此日期範圍內無資料,請擴大範圍。")
            empty_fig = go.Figure()
            return empty_fig, empty_fig, empty_fig, empty_fig, empty_fig, "N/A", "N/A"
        
        overview_fig = plot_price_and_sentiment(filtered_df, 'avg_model_sentiment', '模型情緒分數', 'crimson')
        class_sentiment_fig = plot_price_and_sentiment(filtered_df, 'avg_class_sentiment', '資料集預設情緒分類', 'yellow')
        polarity_fig = plot_price_and_sentiment(filtered_df, 'avg_polarity', '情感極性 (Polarity)', 'orange')
        subjectivity_fig = plot_subjectivity_trend(filtered_df)
        
        if sentiment_type == "模型情緒分數":
            sentiment_col = 'avg_model_sentiment'
        elif sentiment_type == "資料集預設情緒分類":
            sentiment_col = 'avg_class_sentiment'
        else: # Polarity
            sentiment_col = 'avg_polarity'
            
        corr_fig, corr_val, p_val = plot_correlation(filtered_df, sentiment_col, lag_days)
        
        return overview_fig, class_sentiment_fig, polarity_fig, subjectivity_fig, corr_fig, f"{corr_val:.4f}", f"{p_val:.4f}"

    def update_news_browser(date_obj):
        if date_obj is None:
            return "請選擇日期", "無"
        top_news, bottom_news = get_top_bottom_news(date_obj)
        return top_news, bottom_news

    inputs_for_main_update = [start_date_input, end_date_input, lag_slider, sentiment_type_radio]
    outputs_for_main_update = [plot_overview, plot_class_sentiment, plot_polarity, plot_subjectivity, plot_corr, correlation_output, p_value_output]
    
    for component in [start_date_input, end_date_input, lag_slider, sentiment_type_radio]:
        component.change(fn=update_all, inputs=inputs_for_main_update, outputs=outputs_for_main_update)
    
    news_date_input.change(
        fn=update_news_browser,
        inputs=[news_date_input],
        outputs=[top_news_output, bottom_news_output]
    )

    def load_app():
        main_outputs = update_all(min_date_dt, max_date_dt, 1, "模型情緒分數")
        news_outputs = update_news_browser(max_date_dt)
        return main_outputs + news_outputs

    app.load(
        fn=load_app, 
        inputs=None, 
        outputs=outputs_for_main_update + [top_news_output, bottom_news_output]
    )

app.launch(debug=False, share=True, show_error=True, show_api=False)