import gradio as gr import requests import random from geopy.geocoders import Nominatim import os from huggingface_hub import InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN") client = InferenceClient(api_key=HF_TOKEN) # 餐點推薦資料庫(根據情緒和天氣) meal_recommendations = { "開心": { "cold": ["小籠包", "燉牛肉", "泡麵", "玉米濃湯"], "hot": ["雪花冰", "氣水", "涼麵", "西瓜"], "normal": ["炸雞配汽水", "壽喜燒", "韓式烤肉"] }, "羞愧": { "cold": ["抹茶", "清淡的米粥", "唐心蛋"], "hot": ["蔬菜沙拉", "冷飲", "玉米餅"], "normal": ["全麥麵包", "藍莓、草莓、橙子", "蒸包子"] }, "憤怒": { "cold": ["暖呼呼的火鍋", "熱可可", "麻辣湯"], "hot": ["冰沙", "涼拌黃瓜", "水果"], "normal": ["炸雞", "巧克力", "薰衣草茶"] }, "悲傷": { "cold": ["雞湯", "清淡的米粥", "餅乾"], "hot": ["冷湯", "冰棒", "三明治"], "normal": ["牛排", "雞蛋", "波士頓派"] }, "忌妒": { "cold": ["熱狗","拉麵","泡麵"], "hot": ["蔬菜沙拉", "冷飲",], "normal": ["奶酥麵包","橙子","pizza"] }, "恐懼": { "cold": ["湯泡飯", "泡麵", "湯麵"], "hot": ["涼麵", "飲料", "冰淇淋"], "normal": ["爆米花", "薯片", "牛排"] } } # 主功能函式 def recommend_meal(emotion, city): temp, weather_info = get_weather(city) if temp is None: return "Unable to fetch weather details. Please check if the city name is correct.", "", "" # 根據情緒和氣候選擇餐點 # 請自行完成挑選餐點的邏輯 if temp < 15: climate = "cold" elif temp > 28: climate = "hot" else: climate = "normal" meals = meal_recommendations.get(emotion, {}).get(climate, ["隨意料理"]) meal= random.choice(meals) # 生成暖心話語 comforting_message = generate_comforting_message(emotion) recommendation = f"Today's Top Pick: {meal}" return f"Current Weather:\n{weather_info}", recommendation, comforting_message def get_weather(city): geolocator = Nominatim(user_agent="geoapi") location = geolocator.geocode(city) if location: lat, lon = location.latitude, location.longitude # 使用 Open-Meteo API 取得天氣數據 weather_url = f"https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lon}¤t_weather=true" weather_response = requests.get(weather_url) if weather_response.status_code == 200: weather_data = weather_response.json() temp, temp_unit = weather_data['current_weather']['temperature'], weather_data['current_weather_units']['temperature'] windspeed, windspeed_unit = weather_data['current_weather']['windspeed'], weather_data['current_weather_units']['windspeed'] weather_desc = f"{temp}{temp_unit},Wind speed: {windspeed} {windspeed_unit}" return temp, weather_desc else: return None, None # 生成暖心話語的函式 def generate_comforting_message(emotion): temperature, top_p = random.uniform(0.6, 0.75), random.uniform(0.7, 1.0) completion = client.chat.completions.create( model="mistralai/Mistral-Nemo-Instruct-2407", messages=[{ "role": "system", "content": "你是一位善解人意且富有同理心的 AI 助理,專門為人們提供鼓勵和安慰。無論使用者的情緒如何,你都能給予真摯、溫暖且鼓舞人心的話語,讓他們感到被理解和支持。請用溫柔、真誠且富有啟發性的語氣回應,並確保所有回覆都以**繁體中文**撰寫。" }, { "role": "user", "content": f"我現在感到{emotion},請給我一句鼓勵的話。\n" }], temperature=temperature, max_tokens=2048, top_p=top_p, ) return completion.choices[0].message.content # Gradio 介面 with gr.Blocks() as app: gr.Markdown("## 🌤️🍽️ Meal Matchmaker: Food for Your Mood and Weather! 🍽️🌤️") with gr.Row(): with gr.Column(): emotion = gr.Dropdown( ["開心", "羞愧", "憤怒", "悲傷", "忌妒", "恐懼"], label="🎭 Pick Your Mood " ) with gr.Column(): city = gr.Textbox(label="📍 Enter Your Location (e.g., 台北、Okinawa)") submit_btn = gr.Button("Serve Me a Meal! ✨") with gr.Row(): weather_output = gr.Textbox(label="☁️ Weather Check", interactive=False) meal_output = gr.Textbox(label="🎉 Your Perfect Meal", interactive=False) message_output = gr.Textbox(label="💖 A Little Boost of Encouragement", interactive=False) submit_btn.click( recommend_meal, inputs=[emotion, city], outputs=[weather_output, meal_output, message_output] ) # 啟動應用 app.launch(debug=False)