File size: 23,315 Bytes
682647c
 
 
872a7b3
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ad1081
 
 
 
 
 
 
 
 
 
682647c
 
 
 
872a7b3
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872a7b3
 
 
 
682647c
 
 
 
d150b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682647c
 
d150b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682647c
 
d150b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682647c
 
d150b57
 
 
 
 
 
 
 
 
 
 
 
 
 
682647c
 
d150b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
872a7b3
682647c
 
 
 
 
872a7b3
682647c
 
 
 
 
872a7b3
 
 
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872a7b3
682647c
 
 
 
 
47273de
 
682647c
 
 
 
 
 
 
 
 
 
47273de
 
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47273de
 
682647c
 
 
 
 
 
 
 
 
b4aa58d
682647c
 
 
 
 
 
 
 
 
 
 
 
 
b4aa58d
682647c
 
 
 
 
 
 
b4aa58d
682647c
 
 
 
 
 
 
 
b4aa58d
682647c
 
 
 
3dd55da
47273de
682647c
 
 
 
 
47273de
682647c
47273de
 
 
682647c
 
 
1ad1081
682647c
 
 
 
 
 
 
 
 
47273de
 
 
 
b4aa58d
47273de
b4aa58d
47273de
 
 
682647c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4aa58d
682647c
 
 
 
 
 
 
 
 
 
 
 
47273de
 
 
 
 
 
 
1ad1081
47273de
 
 
 
 
 
 
 
 
682647c
391ab3b
a7aee5a
 
 
 
 
 
 
 
 
 
682647c
a7aee5a
a2e28d0
a7aee5a
 
 
 
47273de
a7aee5a
 
 
 
 
 
 
 
 
 
 
 
47273de
 
 
 
 
 
 
 
 
 
 
662029e
47273de
a7aee5a
 
 
 
 
 
 
 
 
 
 
e1f4f54
721b678
a7aee5a
721b678
a7aee5a
 
 
 
 
 
721b678
a7aee5a
682647c
a7aee5a
 
 
682647c
a7aee5a
682647c
47273de
 
632c078
662029e
 
 
 
 
632c078
662029e
 
 
 
 
 
 
632c078
662029e
47273de
b4aa58d
47273de
 
 
 
 
 
1ad1081
47273de
 
b4aa58d
47273de
a7aee5a
 
47273de
b4aa58d
a7aee5a
 
682647c
a7aee5a
 
 
 
 
 
682647c
a7aee5a
 
682647c
a7aee5a
682647c
35025e2
8451447
632c078
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import gradio as gr
from diffusers import DiffusionPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, UniPCMultistepScheduler
from stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline
from controlnet_aux import OpenposeDetector, MidasDetector, ZoeDetector
from tqdm import tqdm

import torch
import numpy as np
import cv2
from PIL import Image
import os
import random
import gc

def clear_memory():
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

# Function to resize images while preserving the aspect ratio
def resize_image(image, max_size=1024):
    width, height = image.size
    if max(width, height) > max_size:
        ratio = max_size / max(width, height)
        new_width = int(width * ratio)
        new_height = int(height * ratio)
        image = image.resize((new_width, new_height), Image.ANTIALIAS)
    return image

# Global variable definitions
controlnet_pipe = None
reference_pipe = None
pipe = None
current_controlnet_type = None

# Load the base model
model = "aicollective1/aicollective"
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
pipe.to("cuda")

# Placeholder for ControlNet models to be loaded dynamically
controlnet_models = {
    "Canny": None,
    "Depth": None,
    "OpenPose": None,
    "Reference": None
}

# Load necessary models and feature extractors for depth estimation and OpenPose
processor_zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processor_midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

controlnet_model_shared = ControlNetModel.from_pretrained(
    "xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True
)

# Define the prompts and negative prompts for each style
styles = {
    "Anime Studio Dance": {
        "prompt": (
            "anime screencap of a man wearing a white helmet with pointed ears,\n"
            "\n"
            "closed animal print shirt,\n"
            "\n"
            "anime style, looking at viewer, solo, upper body,\n"
            "\n"
            "((masterpiece)), (best quality), (extremely detailed), depth of field, sketch, "
            "dark intense shadows, sharp focus, soft lighting, hdr, colorful, good composition, spectacular,"
        ),
        "negative_prompt": (
            "realistic, (painting by bad-artist-anime:0.9), (painting by bad-artist:0.9), watermark, "
            "text, error, blurry, jpeg artifacts, cropped, worst quality, low quality, normal quality, "
            "jpeg artifacts, signature, watermark, username, artist name, (worst quality, low quality:1.4), "
            "bad anatomy, watermark, signature, text, logo"
        )
    },
    "Vintage Realistic": {
        "prompt": (
            "a masterpiece close up shoot photography of an man wearing a animal print helmet with pointed ears,\n"
            "\n"
            "wearing an big oversized outfit, white leather jacket,\n"
            "\n"
            "sitting on steps,\n"
            "\n"
            "hyper realistic with detailed textures, cinematic film still of Photorealism, realistic skin texture, "
            "subsurface scattering, skinny, Photorealism, often for highly detailed representation, photographic accuracy, "
            "shallow depth of field, vignette, highly detailed, bokeh, epic, gorgeous, sharp, perfect hands,\n"
            "<lora:add-detail-xl:1> <lora:Vintage_Street_Photo:0.9>"
        ),
        "negative_prompt": (
            "deformed skin, skin veins, black skin, blurry, text, yellow, deformed, (worst quality, low resolution, "
            "bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d render, "
            "distorted, twisted, watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, "
            "glitch, deformed, mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, "
            "(high contrast:1.2), (over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, "
            "ugly, tiling, poorly drawn hands, 3d render, impressionism, digital art"
        )
    },
    "Anime 90's Aesthetic": {
        "prompt": (
            "an man wearing a white helmet with pointed ears, perfect chin,\n"
            "\n"
            "wearing oversized hoodie, animal print pants,\n"
            "\n"
            "dancing in nature, music production, music instruments made of wood,\n"
            "\n"
            "A screengrab of an anime, 90's aesthetic,"
        ),
        "negative_prompt": (
            "photo, real, realistic, blurry, text, yellow, deformed, (worst quality, low resolution, bad hands,), "
            "text, watermark, artist name, distorted, twisted, watermark, 3d render, distorted, twisted, watermark, "
            "text, abstract, glitch, deformed, mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, "
            "canvas frame, (high contrast:1.2), (over saturated:1.2), (glossy:1.1), disfigured, Photoshop, video game, "
            "ugly, tiling, poorly drawn hands, 3d render, impressionism, eyes, mouth, black skin, pale skin, hair, beard"
        )
    },
    "Anime Style": {
        "prompt": (
            "An man wearing a white helmet with pointed ears sitting on the steps of an Asian street shop,\n"
            "\n"
            "wearing blue pants and a yellow jacket with a red backpack, in the anime style with detailed "
            "character design in the style of Atey Ghailan, featured in CGSociety, character concept art in the style of Katsuhiro Otomo"
        ),
        "negative_prompt": (
            "real, deformed fingers, chin, deformed hands, blurry, text, yellow, deformed, (worst quality, low resolution, "
            "bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d, distorted, twisted, "
            "watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, "
            "ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, (high contrast:1.2), "
            "(over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, ugly, tiling, "
            "poorly drawn hands, 3d render, impressionism, digital art"
        )
    },
    "Real 70s": {
        "prompt": (
            "a masterpiece close up shoot photography of an man wearing a white helmet with pointed ears,\n"
            "\n"
            "wearing an oversized trippy 70s shirt and scarf,\n"
            "\n"
            "standing on the ocean,\n"
            "\n"
            "shot in the style of Erwin Olaf, hyper realistic with detailed textures, cinematic film still of Photorealism, "
            "realistic skin texture, subsurface scattering, skinny, Photorealism, often for highly detailed representation, "
            "photographic accuracy, shallow depth of field, vignette, highly detailed, bokeh, epic, gorgeous, sharp,"
        ),
        "negative_prompt": (
            "deformed skin, skin veins, black skin, blurry, text, yellow, deformed, (worst quality, low resolution, "
            "bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d render, distorted, "
            "twisted, watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, "
            "mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, (high contrast:1.2), "
            "(over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, ugly, tiling, "
            "poorly drawn hands, 3d render, impressionism, digital art"
        )
    }
}

# Define the style images
style_images = {
    "Anime Studio Dance": "style/Anime Studio Dance.png",
    "Vintage Realistic": "style/Vintage Realistic.png",
    "Anime 90's Aesthetic": "style/Anime 90's Aesthetic.png",
    "Anime Style": "style/Anime Style.png",
    "Real 70s": "style/Real 70s.png"
}

# Function to load ControlNet models dynamically
def load_controlnet_model(controlnet_type):
    global controlnet_pipe, pipe, reference_pipe, controlnet_models, vae, model, current_controlnet_type, controlnet_model_shared

    clear_memory()

    if controlnet_models[controlnet_type] is None:
        if controlnet_type in ["Canny", "Depth", "OpenPose"]:
            controlnet_models[controlnet_type] = controlnet_model_shared
        elif controlnet_type == "Reference":
            controlnet_models[controlnet_type] = StableDiffusionXLReferencePipeline.from_pretrained(
                model, torch_dtype=torch.float16, use_safetensors=True
            )

    if current_controlnet_type == controlnet_type:
        return f"{controlnet_type} model already loaded."

    if 'controlnet_pipe' in globals() and controlnet_pipe is not None:
        controlnet_pipe.to("cpu")
        del controlnet_pipe
        globals()['controlnet_pipe'] = None

    if 'reference_pipe' in globals() and reference_pipe is not None:
        reference_pipe.to("cpu")
        del reference_pipe
        globals()['reference_pipe'] = None

    if pipe is not None:
        pipe.to("cpu")

    clear_memory()

    if controlnet_type == "Reference":
        reference_pipe = controlnet_models[controlnet_type]
        reference_pipe.scheduler = UniPCMultistepScheduler.from_config(reference_pipe.scheduler.config)
        reference_pipe.to("cuda")
        globals()['reference_pipe'] = reference_pipe
    else:
        controlnet_pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            model, controlnet=controlnet_models[controlnet_type], vae=vae, torch_dtype=torch.float16, use_safetensors=True
        )
        controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
        controlnet_pipe.to("cuda")
        globals()['controlnet_pipe'] = controlnet_pipe

    current_controlnet_type = controlnet_type
    clear_memory()
    return f"Loaded {controlnet_type} model."

# Preprocessing functions for each ControlNet type
def preprocess_canny(image):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")
    if isinstance(image, Image.Image):
        image = np.array(image)
    if image.dtype != np.uint8:
        image = (image * 255).astype(np.uint8)
    image = cv2.Canny(image, 100, 200)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    return Image.fromarray(image)

def preprocess_depth(image, target_size=(1024, 1024)):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")
    if isinstance(image, Image.Image):
        img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    else:
        img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

    depth_img = processor_zoe(img, output_type='cv2') if random.random() > 0.5 else processor_midas(img, output_type='cv2')

    height, width = depth_img.shape[:2]
    ratio = min(target_size[0] / width, target_size[1] / height)
    new_width, new_height = int(width * ratio), int(height * ratio)
    depth_img_resized = cv2.resize(depth_img, (new_width, new_height))

    return Image.fromarray(depth_img_resized)

def preprocess_openpose(image):
    if isinstance(image, str):
        image = Image.open(image).convert("RGB")
    if isinstance(image, Image.Image):
        image = np.array(image)
    image = openpose_processor(image, hand_and_face=False, output_type='cv2')
    height, width = image.shape[:2]
    ratio = np.sqrt(1024. * 1024. / (width * height))
    new_width, new_height = int(width * ratio), int(height * ratio)
    image = cv2.resize(image, (new_width, new_height))
    return Image.fromarray(image)

def process_image_batch(images, pipe, prompt, negative_prompt, num_inference_steps, progress, batch_size=2):
    all_processed_images = []
    for i in range(0, len(images), batch_size):
        batch = images[i:i+batch_size]
        batch_prompt = [prompt] * len(batch)
        batch_negative_prompt = [negative_prompt] * len(batch)

        if isinstance(pipe, StableDiffusionXLReferencePipeline):
            processed_batch = []
            for img in batch:
                result = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    ref_image=img,
                    num_inference_steps=num_inference_steps
                ).images
                processed_batch.extend(result)
        else:
            processed_batch = pipe(
                prompt=batch_prompt,
                negative_prompt=batch_negative_prompt,
                image=batch,
                num_inference_steps=num_inference_steps
            ).images

        all_processed_images.extend(processed_batch)
        progress((i + batch_size) / len(images))  # Update progress bar
        clear_memory()  # Clear memory after each batch
    return all_processed_images

# Define the function to generate images
def generate_images_with_progress(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, control_images, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    global controlnet_pipe, pipe, reference_pipe

    clear_memory()

    chunk_size = 1  # Adjust this number based on your memory capacity

    if use_controlnet:
        if controlnet_type not in controlnet_models or controlnet_models[controlnet_type] is None:
            raise ValueError(f"{controlnet_type} model not loaded. Please load the model first.")

        if mode == "Single Image":
            control_images = [control_images] if isinstance(control_images, Image.Image) else control_images
        else:
            if not control_images:
                raise ValueError("No images provided for batch processing.")
            control_images = [Image.open(img).convert("RGB") if isinstance(img, str) else img for img in control_images]

        preprocessed_images = []
        for img in tqdm(control_images, desc="Preprocessing images"):
            img = resize_image(img)  # Resize the image before preprocessing
            if controlnet_type == "Canny":
                preprocessed_images.append(preprocess_canny(img))
            elif controlnet_type == "Depth":
                preprocessed_images.append(preprocess_depth(img))
            elif controlnet_type == "OpenPose":
                preprocessed_images.append(preprocess_openpose(img))
            else:  # Reference
                preprocessed_images.append(img)

        images = []
        for i in range(0, len(preprocessed_images), chunk_size):
            chunk = preprocessed_images[i:i+chunk_size]
            if controlnet_type == "Reference":
                images_chunk = process_image_batch(chunk, reference_pipe, prompt, negative_prompt, num_inference_steps, progress)
            else:
                images_chunk = process_image_batch(chunk, controlnet_pipe, prompt, negative_prompt, num_inference_steps, progress)
            images.extend(images_chunk)
            clear_memory()

    else:
        if 'controlnet_pipe' in globals() and controlnet_pipe is not None:
            controlnet_pipe.to("cpu")
            del controlnet_pipe
            globals()['controlnet_pipe'] = None

        if 'reference_pipe' in globals() and reference_pipe is not None:
            reference_pipe.to("cpu")
            del reference_pipe
            globals()['reference_pipe'] = None

        clear_memory()

        if pipe is None:
            pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
        pipe.to("cuda")

        images = []
        for i in tqdm(range(batch_count), desc="Generating images"):
            generated = pipe(prompt=[prompt], negative_prompt=[negative_prompt], num_inference_steps=num_inference_steps, width=1024, height=1024).images
            images.extend(generated)
            progress((i + 1) / batch_count)  # Update progress bar
            clear_memory()  # Clear memory after each image, even in single image mode

    clear_memory()
    return images

# Function to extract PNG metadata
def extract_png_info(image_path):
    metadata = image_path.info  # This is a dictionary containing key-value pairs of metadata
    return metadata

# Load images from the specified folder
def load_images_from_folder(folder_path):
    images = []
    for filename in os.listdir(folder_path):
        if filename.endswith(('.png', '.jpg', '.jpeg')):
            img_path = os.path.join(folder_path, filename)
            img = Image.open(img_path).convert("RGB")
            img = resize_image(img)  # Resize the image before adding to the list
            images.append((filename, img))
    return images

# Folder path where images are stored
image_folder_path = "control"  # Update this path to your folder

# Load images from folder
loaded_images = load_images_from_folder(image_folder_path)

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Generation with Custom Prompts and Styles")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", lines=8, interactive=True)
            with gr.Accordion("Negative Prompt (Minimize/Expand)", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="",
                    lines=5
                )
            batch_count = gr.Slider(minimum=1, maximum=10, step=1, label="Batch Count", value=1)
            num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30)
            use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
            controlnet_type = gr.Dropdown(choices=["Canny", "Depth", "OpenPose", "Reference"], label="ControlNet Type")
            controlnet_status = gr.Textbox(label="ControlNet Status", value="", interactive=False)
            mode = gr.Radio(choices=["Single Image", "Batch"], label="Mode", value="Single Image")
            use_control_folder = gr.Checkbox(label="Use Control Folder for Batch Processing", value=False)

            with gr.Tabs() as tabs:
                with gr.TabItem("Single Image"):
                    control_image = gr.Image(label="Control Image", type='pil')

                with gr.TabItem("Batch"):
                    batch_images_input = gr.File(label="Upload Images", file_count='multiple')

                with gr.TabItem("Extract Metadata"):
                    png_image = gr.Image(label="Upload PNG Image", type='pil')
                    metadata_output = gr.JSON(label="PNG Metadata")

                with gr.TabItem("Select from Folder"):
                    folder_images_gallery = gr.Gallery(
                        label="Images from Folder",
                        value=[img[1] for img in loaded_images],
                        interactive=True,
                        elem_id="folder-gallery",
                        columns=5,
                        object_fit="contain",
                        height=235,
                        allow_preview=False
                    )
                    clear_selection_button = gr.Button("Clear Selection")

        with gr.Column(scale=2):
            style_images_gallery = gr.Gallery(
                label="Choose a Style",
                value=list(style_images.values()),
                interactive=True,
                elem_id="style-gallery",
                columns=5,
                object_fit="contain",
                height=235,
                allow_preview=False
            )
            gallery = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=820)

    selected_style = gr.State(value="Anime Studio Dance")

    def select_style(evt: gr.SelectData):
        style_names = list(styles.keys())
        if evt.index < 0 or evt.index >= len(style_names):
            raise ValueError(f"Invalid index: {evt.index}")
        selected_style = style_names[evt.index]
        return styles[selected_style]["prompt"], styles[selected_style]["negative_prompt"], selected_style

    style_images_gallery.select(fn=select_style, inputs=[], outputs=[prompt, negative_prompt, selected_style])

    def update_controlnet(controlnet_type):
        status = load_controlnet_model(controlnet_type)
        return status

    controlnet_type.change(fn=update_controlnet, inputs=controlnet_type, outputs=controlnet_status)

    selected_folder_images = gr.State(value=[])

    def select_folder_image(evt: gr.SelectData, selected_folder_images):
        folder_image_names = [img[0] for img in loaded_images]
        if evt.index < 0 or evt.index >= len(folder_image_names):
            raise ValueError(f"Invalid index: {evt.index}")
        selected_image_name = folder_image_names[evt.index]
        selected_image = next(img for img in loaded_images if img[0] == selected_image_name)
        current_images = selected_folder_images or []
        if selected_image not in current_images:
            current_images.append(selected_image)
        return current_images

    def clear_selected_folder_images():
        return []

    folder_images_gallery.select(fn=select_folder_image, inputs=[selected_folder_images], outputs=selected_folder_images)
    clear_selection_button.click(fn=clear_selected_folder_images, inputs=[], outputs=selected_folder_images)

    def generate_images_with_folder_images(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, use_control_folder, selected_folder_images, batch_images_input, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
        if mode == "Batch":
            if use_control_folder:
                selected_images = [img[1] for img in loaded_images]
            else:
                if not batch_images_input:
                    raise ValueError("No images uploaded for batch processing.")
                selected_images = [resize_image(Image.open(img).convert("RGB")) for img in batch_images_input]
        else:
            selected_images = [img[1] for img in selected_folder_images]
        return generate_images_with_progress(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, selected_images, num_inference_steps, progress)

    generate_button = gr.Button("Generate Images")
    generate_button.click(
        generate_images_with_folder_images,
        inputs=[prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, use_control_folder, selected_folder_images, batch_images_input, num_inference_steps],
        outputs=gallery
    )

    metadata_button = gr.Button("Extract Metadata")
    metadata_button.click(
        fn=extract_png_info,
        inputs=png_image,
        outputs=metadata_output
    )

    with gr.Row():
        generate_button

# At the end of your script:
if __name__ == "__main__":
    # Your Gradio interface setup here
    demo.launch(auth=("roland", "roland"), debug=True)
    clear_memory()