Spaces:
Runtime error
Runtime error
File size: 25,434 Bytes
682647c 872a7b3 682647c 8629ce2 682647c d6c7c4a 1ad1081 682647c 872a7b3 682647c 872a7b3 682647c d150b57 e84fcde 682647c d150b57 e84fcde 682647c d150b57 e84fcde 682647c d150b57 e84fcde 682647c d150b57 e84fcde 682647c 872a7b3 682647c 872a7b3 682647c 872a7b3 682647c 872a7b3 682647c 47273de 682647c 47273de 682647c 47273de 682647c 62ce5a0 682647c b4aa58d 682647c 296b94d 682647c b4aa58d 682647c 8629ce2 5240fe1 b4aa58d 682647c 3dd55da 47273de 682647c 47273de 682647c 47273de 682647c 1ad1081 682647c 47273de bdfb705 47273de 682647c b4aa58d 682647c ccf455b 8629ce2 c17eee7 8629ce2 682647c 47273de 1ad1081 47273de 682647c 391ab3b a7aee5a 682647c 453f9fe a2e28d0 a7aee5a c426650 d6c7c4a 47273de a7aee5a 47273de 662029e 47273de a7aee5a aeea974 8629ce2 721b678 a7aee5a 721b678 a7aee5a e84fcde 721b678 e84fcde 682647c a7aee5a 682647c a7aee5a 682647c 47273de d6c7c4a 662029e 632c078 d6c7c4a 662029e d6c7c4a 662029e 47273de d6c7c4a bdfb705 d6c7c4a bdfb705 47273de bdfb705 8629ce2 47273de a7aee5a 47273de d6c7c4a 8629ce2 a7aee5a 682647c a7aee5a 682647c d6c7c4a 687bf5b d6c7c4a 687bf5b a7aee5a d6c7c4a 682647c a7aee5a 682647c 35025e2 8451447 703aec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import gradio as gr
from diffusers import DiffusionPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, UniPCMultistepScheduler
from stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline
from controlnet_aux import OpenposeDetector, MidasDetector, ZoeDetector
from tqdm import tqdm
import torch
import numpy as np
import cv2
from PIL import Image
import os
import random
import gc
import tempfile
def clear_memory():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def reset_ui():
clear_memory()
return (
"", # Reset prompt
"", # Reset negative prompt
1, # Reset batch count
30, # Reset number of inference steps
False, # Reset use controlnet
None, # Reset controlnet type
"Restart/Refresh completed", # Reset controlnet status with message
"Single Image", # Reset mode
False, # Reset use control folder
None, # Reset control image
[], # Reset selected folder images
None, # Reset batch images input
)
# Function to resize images while preserving the aspect ratio
def resize_image(image, max_size=1024):
width, height = image.size
if max(width, height) > max_size:
ratio = max_size / max(width, height)
new_width = int(width * ratio)
new_height = int(height * ratio)
image = image.resize((new_width, new_height), Image.ANTIALIAS)
return image
# Global variable definitions
controlnet_pipe = None
reference_pipe = None
pipe = None
current_controlnet_type = None
# Load the base model
model = "aicollective1/aicollective"
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
pipe.to("cuda")
# Placeholder for ControlNet models to be loaded dynamically
controlnet_models = {
"Canny": None,
"Depth": None,
"OpenPose": None,
"Reference": None
}
# Load necessary models and feature extractors for depth estimation and OpenPose
processor_zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processor_midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
controlnet_model_shared = ControlNetModel.from_pretrained(
"xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True
)
# Define the prompts and negative prompts for each style
styles = {
"Anime Studio Dance": {
"prompt": (
"anime screencap of a man wearing a white helmet with pointed ears,\n"
"\n"
"closed animal print shirt,\n"
"\n"
"anime style, looking at viewer, solo, upper body,\n"
"\n"
"((masterpiece)), (best quality), (extremely detailed), depth of field, sketch, "
"dark intense shadows, sharp focus, soft lighting, hdr, colorful, good composition, spectacular,"
),
"negative_prompt": (
"realistic, (painting by bad-artist-anime:0.9), (painting by bad-artist:0.9), watermark, "
"text, error, blurry, jpeg artifacts, cropped, worst quality, low quality, normal quality, "
"jpeg artifacts, signature, watermark, username, artist name, (worst quality, low quality:1.4), "
"bad anatomy, watermark, signature, text, logo"
),
"steps": 40
},
"Vintage Realistic": {
"prompt": (
"a masterpiece close up shoot photography of an man wearing a animal print helmet with pointed ears,\n"
"\n"
"wearing an big oversized outfit, white leather jacket,\n"
"\n"
"sitting on steps,\n"
"\n"
"hyper realistic with detailed textures, cinematic film still of Photorealism, realistic skin texture, "
"subsurface scattering, skinny, Photorealism, often for highly detailed representation, photographic accuracy, "
"shallow depth of field, vignette, highly detailed, bokeh, epic, gorgeous, sharp, perfect hands,\n"
"<lora:add-detail-xl:1> <lora:Vintage_Street_Photo:0.9>"
),
"negative_prompt": (
"deformed skin, skin veins, black skin, blurry, text, yellow, deformed, (worst quality, low resolution, "
"bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d render, "
"distorted, twisted, watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, "
"glitch, deformed, mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, "
"(high contrast:1.2), (over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, "
"ugly, tiling, poorly drawn hands, 3d render, impressionism, digital art"
),
"steps": 30
},
"Anime 90's Aesthetic": {
"prompt": (
"an man wearing a white helmet with pointed ears, perfect chin,\n"
"\n"
"wearing oversized hoodie, animal print pants,\n"
"\n"
"dancing in nature, music production, music instruments made of wood,\n"
"\n"
"A screengrab of an anime, 90's aesthetic,"
),
"negative_prompt": (
"photo, real, realistic, blurry, text, yellow, deformed, (worst quality, low resolution, bad hands,), "
"text, watermark, artist name, distorted, twisted, watermark, 3d render, distorted, twisted, watermark, "
"text, abstract, glitch, deformed, mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, "
"canvas frame, (high contrast:1.2), (over saturated:1.2), (glossy:1.1), disfigured, Photoshop, video game, "
"ugly, tiling, poorly drawn hands, 3d render, impressionism, eyes, mouth, black skin, pale skin, hair, beard"
),
"steps": 34
},
"Anime Style": {
"prompt": (
"An man wearing a white helmet with pointed ears sitting on the steps of an Asian street shop,\n"
"\n"
"wearing blue pants and a yellow jacket with a red backpack, in the anime style with detailed "
"character design in the style of Atey Ghailan, featured in CGSociety, character concept art in the style of Katsuhiro Otomo"
),
"negative_prompt": (
"real, deformed fingers, chin, deformed hands, blurry, text, yellow, deformed, (worst quality, low resolution, "
"bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d, distorted, twisted, "
"watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, "
"ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, (high contrast:1.2), "
"(over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, ugly, tiling, "
"poorly drawn hands, 3d render, impressionism, digital art"
),
"steps": 28
},
"Real 70s": {
"prompt": (
"a masterpiece close up shoot photography of an man wearing a white helmet with pointed ears,\n"
"\n"
"wearing an oversized trippy 70s shirt and scarf,\n"
"\n"
"standing on the ocean,\n"
"\n"
"shot in the style of Erwin Olaf, hyper realistic with detailed textures, cinematic film still of Photorealism, "
"realistic skin texture, subsurface scattering, skinny, Photorealism, often for highly detailed representation, "
"photographic accuracy, shallow depth of field, vignette, highly detailed, bokeh, epic, gorgeous, sharp,"
),
"negative_prompt": (
"deformed skin, skin veins, black skin, blurry, text, yellow, deformed, (worst quality, low resolution, "
"bad hands, open mouth), text, watermark, artist name, distorted, twisted, watermark, 3d render, distorted, "
"twisted, watermark, anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, "
"mutated, ugly, disfigured, photoshopped skin, airbrushed skin, glossy skin, canvas frame, (high contrast:1.2), "
"(over saturated:1.2), (glossy:1.1), cartoon, 3d, disfigured, Photoshop, video game, ugly, tiling, "
"poorly drawn hands, 3d render, impressionism, digital art"
),
"steps": 40
}
}
# Define the style images
style_images = {
"Anime Studio Dance": "style/Anime Studio Dance.png",
"Vintage Realistic": "style/Vintage Realistic.png",
"Anime 90's Aesthetic": "style/Anime 90's Aesthetic.png",
"Anime Style": "style/Anime Style.png",
"Real 70s": "style/Real 70s.png"
}
# Function to load ControlNet models dynamically
def load_controlnet_model(controlnet_type):
global controlnet_pipe, pipe, reference_pipe, controlnet_models, vae, model, current_controlnet_type, controlnet_model_shared
clear_memory()
if controlnet_models[controlnet_type] is None:
if controlnet_type in ["Canny", "Depth", "OpenPose"]:
controlnet_models[controlnet_type] = controlnet_model_shared
elif controlnet_type == "Reference":
controlnet_models[controlnet_type] = StableDiffusionXLReferencePipeline.from_pretrained(
model, torch_dtype=torch.float16, use_safetensors=True
)
if current_controlnet_type == controlnet_type:
return f"{controlnet_type} model already loaded."
if 'controlnet_pipe' in globals() and controlnet_pipe is not None:
controlnet_pipe.to("cpu")
del controlnet_pipe
globals()['controlnet_pipe'] = None
if 'reference_pipe' in globals() and reference_pipe is not None:
reference_pipe.to("cpu")
del reference_pipe
globals()['reference_pipe'] = None
if pipe is not None:
pipe.to("cpu")
clear_memory()
if controlnet_type == "Reference":
reference_pipe = controlnet_models[controlnet_type]
reference_pipe.scheduler = UniPCMultistepScheduler.from_config(reference_pipe.scheduler.config)
reference_pipe.to("cuda")
globals()['reference_pipe'] = reference_pipe
else:
controlnet_pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
model, controlnet=controlnet_models[controlnet_type], vae=vae, torch_dtype=torch.float16, use_safetensors=True
)
controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
controlnet_pipe.to("cuda")
globals()['controlnet_pipe'] = controlnet_pipe
current_controlnet_type = controlnet_type
clear_memory()
return f"Loaded {controlnet_type} model."
# Preprocessing functions for each ControlNet type
def preprocess_canny(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
if isinstance(image, Image.Image):
image = np.array(image)
if image.dtype != np.uint8:
image = (image * 255).astype(np.uint8)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
return Image.fromarray(image)
def preprocess_depth(image, target_size=(1024, 1024)):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
if isinstance(image, Image.Image):
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
else:
img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
depth_img = processor_zoe(img, output_type='cv2') if random.random() > 0.5 else processor_midas(img, output_type='cv2')
height, width = depth_img.shape[:2]
ratio = min(target_size[0] / width, target_size[1] / height)
new_width, new_height = int(width * ratio), int(height * ratio)
depth_img_resized = cv2.resize(depth_img, (new_width, new_height))
return Image.fromarray(depth_img_resized)
def preprocess_openpose(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
if isinstance(image, Image.Image):
image = np.array(image)
image = openpose_processor(image, hand_and_face=False, output_type='cv2')
height, width = image.shape[:2]
ratio = np.sqrt(1024. * 1024. / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
image = cv2.resize(image, (new_width, new_height))
return Image.fromarray(image)
def process_image_batch(images, pipe, prompt, negative_prompt, num_inference_steps, progress, batch_size=2):
all_processed_images = []
for i in range(0, len(images), batch_size):
batch = images[i:i+batch_size]
batch_prompt = [prompt] * len(batch)
batch_negative_prompt = [negative_prompt] * len(batch)
if isinstance(pipe, StableDiffusionXLReferencePipeline):
processed_batch = []
for img in batch:
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
ref_image=img,
num_inference_steps=num_inference_steps,
reference_attn=True,
reference_adain=True
).images
processed_batch.extend(result)
else:
processed_batch = pipe(
prompt=batch_prompt,
negative_prompt=batch_negative_prompt,
image=batch,
num_inference_steps=num_inference_steps
).images
all_processed_images.extend(processed_batch)
progress((i + batch_size) / len(images)) # Update progress bar
clear_memory() # Clear memory after each batch
return all_processed_images
# Function to save images as PNG and return their paths
def save_images_as_png(images):
temp_dir = tempfile.mkdtemp()
png_paths = []
for i, img in enumerate(images):
png_path = os.path.join(temp_dir, f"image_{i}.png")
img.save(png_path, "PNG")
png_paths.append(png_path)
return png_paths
# Define the function to generate images
def generate_images_with_progress(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, control_images, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
global controlnet_pipe, pipe, reference_pipe
clear_memory()
chunk_size = 1 # Adjust this number based on your memory capacity
if use_controlnet:
if controlnet_type not in controlnet_models or controlnet_models[controlnet_type] is None:
raise ValueError(f"{controlnet_type} model not loaded. Please load the model first.")
if mode == "Single Image":
control_images = [control_images] if isinstance(control_images, Image.Image) else control_images
else:
if not control_images:
raise ValueError("No images provided for batch processing.")
control_images = [Image.open(img).convert("RGB") if isinstance(img, str) else img for img in control_images]
preprocessed_images = []
for img in tqdm(control_images, desc="Preprocessing images"):
img = resize_image(img) # Resize the image before preprocessing
if controlnet_type == "Canny":
preprocessed_images.append(preprocess_canny(img))
elif controlnet_type == "Depth":
preprocessed_images.append(preprocess_depth(img))
elif controlnet_type == "OpenPose":
preprocessed_images.append(preprocess_openpose(img))
else: # Reference
preprocessed_images.append(img)
images = []
for i in range(0, len(preprocessed_images), chunk_size):
chunk = preprocessed_images[i:i+chunk_size]
if controlnet_type == "Reference":
images_chunk = process_image_batch(chunk, reference_pipe, prompt, negative_prompt, num_inference_steps, progress)
else:
images_chunk = process_image_batch(chunk, controlnet_pipe, prompt, negative_prompt, num_inference_steps, progress)
images.extend(images_chunk)
clear_memory()
else:
if 'controlnet_pipe' in globals() and controlnet_pipe is not None:
controlnet_pipe.to("cpu")
del controlnet_pipe
globals()['controlnet_pipe'] = None
if 'reference_pipe' in globals() and reference_pipe is not None:
reference_pipe.to("cpu")
del reference_pipe
globals()['reference_pipe'] = None
clear_memory()
if pipe is None:
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
pipe.to("cuda")
images = []
for i in tqdm(range(batch_count), desc="Generating images"):
generated = pipe(prompt=[prompt], negative_prompt=[negative_prompt], num_inference_steps=num_inference_steps, width=1024, height=1024).images
images.extend(generated)
progress((i + 1) / batch_count) # Update progress bar
clear_memory() # Clear memory after each image, even in single image mode
clear_memory()
# Save images as PNG and return their paths
png_paths = save_images_as_png(images)
return png_paths
# Function to extract PNG metadata
def extract_png_info(image_path):
metadata = image_path.info # This is a dictionary containing key-value pairs of metadata
return metadata
# Load images from the specified folder
def load_images_from_folder(folder_path):
images = []
for filename in os.listdir(folder_path):
if filename.endswith(('.png', '.jpg', '.jpeg')):
img_path = os.path.join(folder_path, filename)
img = Image.open(img_path).convert("RGB")
img = resize_image(img) # Resize the image before adding to the list
images.append((filename, img))
return images
# Folder path where images are stored
image_folder_path = "control" # Update this path to your folder
# Load images from folder
loaded_images = load_images_from_folder(image_folder_path)
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Generation with Custom Prompts and Styles")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=8, interactive=True)
with gr.Accordion("Negative Prompt (Minimize/Expand)", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="",
lines=5
)
batch_count = gr.Slider(minimum=1, maximum=50, step=1, label="Batch Count", value=1)
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30)
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
controlnet_type = gr.Dropdown(choices=["Canny", "Depth", "OpenPose", "Reference"], label="ControlNet Type")
controlnet_status = gr.Textbox(label="Status", value="", interactive=False)
mode = gr.Radio(choices=["Single Image", "Batch", "Multiselect"], label="Mode", value="Single Image")
use_control_folder = gr.Checkbox(label="Use Control Folder for Batch Processing", value=False)
with gr.Tabs() as tabs:
with gr.TabItem("Single Image"):
control_image = gr.Image(label="Control Image", type='pil')
with gr.TabItem("Batch"):
batch_images_input = gr.File(label="Upload Images", file_count='multiple')
with gr.TabItem("Extract Metadata"):
png_image = gr.Image(label="Upload PNG Image", type='pil')
metadata_output = gr.JSON(label="PNG Metadata")
with gr.TabItem("Select from Folder"):
folder_images_gallery = gr.Gallery(
label="Images from Folder",
value=[img[1] for img in loaded_images],
interactive=True,
elem_id="folder-gallery",
columns=5,
object_fit="contain",
height=235,
allow_preview=False
)
clear_selection_button = gr.Button("Clear Selection")
with gr.Column(scale=2):
style_images_gallery = gr.Gallery(
label="Choose a Style",
value=list(style_images.values()),
interactive=True,
elem_id="style-gallery",
columns=5,
object_fit="contain",
height=235,
allow_preview=False
)
generate_button = gr.Button("Generate Images")
gallery = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=820)
selected_style = gr.State(value="Anime Studio Dance")
def select_style(evt: gr.SelectData):
style_names = list(styles.keys())
if evt.index < 0 or evt.index >= len(style_names):
raise ValueError(f"Invalid index: {evt.index}")
selected_style = style_names[evt.index]
return styles[selected_style]["prompt"], styles[selected_style]["negative_prompt"], styles[selected_style]["steps"], selected_style
style_images_gallery.select(fn=select_style, inputs=[], outputs=[prompt, negative_prompt, num_inference_steps, selected_style])
def update_controlnet(controlnet_type):
status = load_controlnet_model(controlnet_type)
return status
controlnet_type.change(fn=update_controlnet, inputs=controlnet_type, outputs=controlnet_status)
selected_folder_images = gr.State(value=[])
def select_folder_image(evt: gr.SelectData, selected_folder_images, mode):
folder_image_names = [img[0] for img in loaded_images]
if evt.index < 0 or evt.index >= len(folder_image_names):
raise ValueError(f"Invalid index: {evt.index}")
selected_image_name = folder_image_names[evt.index]
selected_image = next(img for img in loaded_images if img[0] == selected_image_name)
current_images = selected_folder_images or []
if mode == "Single Image":
current_images = [selected_image]
else:
if selected_image not in current_images:
current_images.append(selected_image)
return current_images
def clear_selected_folder_images():
return []
folder_images_gallery.select(fn=select_folder_image, inputs=[selected_folder_images, mode], outputs=selected_folder_images)
clear_selection_button.click(fn=clear_selected_folder_images, inputs=[], outputs=selected_folder_images)
def generate_images_with_folder_images(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, use_control_folder, selected_folder_images, batch_images_input, num_inference_steps, control_image, progress=gr.Progress(track_tqdm=True)):
if mode == "Batch" and use_control_folder:
selected_images = [img[1] for img in loaded_images]
elif mode == "Batch":
if not batch_images_input:
raise ValueError("No images uploaded for batch processing.")
selected_images = [resize_image(Image.open(img).convert("RGB")) for img in batch_images_input]
elif mode == "Single Image" and control_image is not None:
selected_images = [control_image]
else:
selected_images = [img[1] for img in selected_folder_images]
# Adjust the batch_count here to generate the desired number of images
selected_images = selected_images * batch_count
return generate_images_with_progress(prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, selected_images, num_inference_steps, progress)
generate_button.click(
generate_images_with_folder_images,
inputs=[prompt, negative_prompt, batch_count, use_controlnet, controlnet_type, mode, use_control_folder, selected_folder_images, batch_images_input, num_inference_steps, control_image],
outputs=gallery
)
metadata_button = gr.Button("Extract Metadata")
metadata_button.click(
fn=extract_png_info,
inputs=png_image,
outputs=metadata_output
)
refresh_button = gr.Button("Restart/Refresh")
refresh_button.click(
fn=reset_ui,
inputs=[],
outputs=[
prompt,
negative_prompt,
batch_count,
num_inference_steps,
use_controlnet,
controlnet_type,
controlnet_status,
mode,
use_control_folder,
control_image,
selected_folder_images,
batch_images_input
]
)
with gr.Row():
refresh_button
# At the end of your script:
if __name__ == "__main__":
# Your Gradio interface setup here
demo.launch(auth=("roland", "roland"), debug=True)
clear_memory()
|