Spaces:
Runtime error
Runtime error
File size: 1,221 Bytes
1e434e8 8ddfa6e 1e434e8 97842c5 961346c 8ddfa6e 1e434e8 961346c 1e434e8 8fa0f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from distutils.command.upload import upload
import pandas as pd
import streamlit as st
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
from transformers import pipeline
@st.cache
def load_data(file):
df = pd.read_csv(file, encoding='utf-8', nrows=50)
return df
#@st.cache # tokenier cannot be cached
def load_pipeline(model_cp, tokenizer_cp):
return pipeline("question-answering", model=model_cp, tokenizer=tokenizer_cp)
# Page config
title = "Recipe Improver"
icon = "🍣"
st.set_page_config(page_title=title, page_icon=icon)
st.title(title)
# Load tokenizer and model
model_cp = "aidan-o-brien/recipe-improver"
tokenizer_cp = "albert-base-v2"
question_answer = load_pipeline(model_cp, tokenizer_cp)
st.write("Model and tokenizer successfully loaded.")
# Load csv
uploaded_file = st.file_uploader("Choose a csv file", type="csv", key='file_uploader')
if uploaded_file is not None:
df = load_data(uploaded_file)
st.write(df.head())
# Run inference on first example
first_example = df['review'][0]
question = "how to improve this recipe?"
answer = question_answer(question=question, context=first_example)
# Present results
st.write(answer) |