from distutils.command.upload import upload import pandas as pd import streamlit as st from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering from transformers import pipeline @st.cache def load_data(file): df = pd.read_csv(file, encoding='utf-8', nrows=50) return df #@st.cache # tokenier cannot be cached def load_pipeline(model_cp, tokenizer_cp): return pipeline("question-answering", model=model_cp, tokenizer=tokenizer_cp) # Page config title = "Recipe Improver" icon = "🍣" st.set_page_config(page_title=title, page_icon=icon) st.title(title) # Load tokenizer and model model_cp = "aidan-o-brien/recipe-improver" tokenizer_cp = "albert-base-v2" question_answer = load_pipeline(model_cp, tokenizer_cp) st.write("Model and tokenizer successfully loaded.") # Load csv uploaded_file = st.file_uploader("Choose a csv file", type="csv", key='file_uploader') if uploaded_file is not None: df = load_data(uploaded_file) st.write(df.head()) # Run inference on first example first_example = df['review'][0] question = "how to improve this recipe?" answer = question_answer(question=question, context=first_example) # Present results st.write(answer)