File size: 2,826 Bytes
357b0b8
 
 
 
 
 
 
 
f9d31ee
357b0b8
 
 
96ac3ab
357b0b8
 
 
 
 
 
 
 
 
 
f9d31ee
 
357b0b8
 
 
 
 
2a06c48
 
c0c0d12
357b0b8
 
 
 
 
 
 
 
9cde513
a78bf29
 
357b0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import matplotlib.pyplot as plt
import nmslib
import numpy as np
import os
import streamlit as st

from transformers import CLIPProcessor, FlaxCLIPModel

import utils

BASELINE_MODEL = "openai/clip-vit-base-patch32"
# MODEL_PATH = "/home/shared/models/clip-rsicd/bs128x8-lr5e-6-adam/ckpt-1"
MODEL_PATH = "flax-community/clip-rsicd-v2"

# IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-baseline.tsv"
# IMAGE_VECTOR_FILE = "/home/shared/data/vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv"
IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv"

# IMAGES_DIR = "/home/shared/data/rsicd_images"
IMAGES_DIR = "./images"


def app():
    filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
    model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)

    st.title("Text to Image Retrieval")
    st.markdown("""
        The CLIP model from OpenAI is trained in a self-supervised manner using 
        contrastive learning to project images and caption text onto a common 
        embedding space. We have fine-tuned the model (see [Model card](https://huggingface.co/flax-community/clip-rsicd-v2)) 
        using the RSICD dataset (10k images and ~50k captions from the remote 
        sensing domain). Click here for [more information about our project](https://github.com/arampacha/CLIP-rsicd).
        
        This demo shows the image to text retrieval capabilities of this model, i.e., 
        given a text query, we use our fine-tuned CLIP model to project the text query 
        to the image/caption embedding space and search for nearby images (by 
        cosine similarity) in this space.
        
        Our fine-tuned CLIP model was previously used to generate image vectors for 
        our demo, and NMSLib was used for fast vector access.

        Some suggested queries to start you off with -- `ships`, `school house`, 
        `military installations`, `mountains`, `beaches`, `airports`, `lakes`, etc.
    """)

    query = st.text_input("Text Query:")
    if st.button("Query"):
        inputs = processor(text=[query], images=None, return_tensors="jax", padding=True)
        query_vec = model.get_text_features(**inputs)
        query_vec = np.asarray(query_vec)
        ids, distances = index.knnQuery(query_vec, k=10)
        result_filenames = [filenames[id] for id in ids]
        images, captions = [], []
        for result_filename, score in zip(result_filenames, distances):
            images.append(
                plt.imread(os.path.join(IMAGES_DIR, result_filename)))
            captions.append("{:s} (score: {:.3f})".format(result_filename, 1.0 - score))
        st.image(images[0:3], caption=captions[0:3])
        st.image(images[3:6], caption=captions[3:6])
        st.image(images[6:9], caption=captions[6:9])
        st.image(images[9:], caption=captions[9:])