Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
4 |
+
import os
|
5 |
+
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# Initialize model and tokenizer globally
|
9 |
+
print("Loading model and tokenizer...")
|
10 |
+
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
11 |
+
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
model = DistilBertForSequenceClassification.from_pretrained(MODEL_NAME)
|
13 |
+
model.eval()
|
14 |
+
print("Model and tokenizer loaded successfully!")
|
15 |
+
|
16 |
+
# Custom labels
|
17 |
+
CUSTOM_LABELS = {
|
18 |
+
0: "Business/Professional",
|
19 |
+
1: "Personal/Casual"
|
20 |
+
}
|
21 |
+
|
22 |
+
def classify_text(text):
|
23 |
+
try:
|
24 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
25 |
+
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
logits = outputs.logits
|
29 |
+
|
30 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
31 |
+
predicted_class_id = logits.argmax().item()
|
32 |
+
confidence = probabilities[0][predicted_class_id].item()
|
33 |
+
|
34 |
+
return {
|
35 |
+
'category': CUSTOM_LABELS[predicted_class_id],
|
36 |
+
'confidence': round(confidence, 3),
|
37 |
+
'all_categories': {
|
38 |
+
label: round(prob.item(), 3)
|
39 |
+
for label, prob in zip(CUSTOM_LABELS.values(), probabilities[0])
|
40 |
+
}
|
41 |
+
}
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error in classify_text: {str(e)}")
|
44 |
+
raise
|
45 |
+
|
46 |
+
@app.route('/classify', methods=['POST'])
|
47 |
+
def classify_email():
|
48 |
+
try:
|
49 |
+
data = request.get_json()
|
50 |
+
|
51 |
+
if not data or 'subject' not in data:
|
52 |
+
return jsonify({
|
53 |
+
'error': 'No subject provided. Please send a JSON with "subject" field.'
|
54 |
+
}), 400
|
55 |
+
|
56 |
+
subject = data['subject']
|
57 |
+
result = classify_text(subject)
|
58 |
+
return jsonify(result)
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error in classify_email: {str(e)}")
|
62 |
+
return jsonify({'error': str(e)}), 500
|
63 |
+
|
64 |
+
@app.route('/', methods=['GET'])
|
65 |
+
def home():
|
66 |
+
return jsonify({
|
67 |
+
'status': 'API is running',
|
68 |
+
'model_name': MODEL_NAME,
|
69 |
+
'usage': {
|
70 |
+
'endpoint': '/classify',
|
71 |
+
'method': 'POST',
|
72 |
+
'body': {'subject': 'Your email subject here'}
|
73 |
+
}
|
74 |
+
})
|
75 |
+
|
76 |
+
if __name__ == '__main__':
|
77 |
+
port = int(os.environ.get('PORT', 7860))
|
78 |
+
print(f"Starting server on port {port}...")
|
79 |
+
app.run(host='0.0.0.0', port=port, debug=True)
|