from flask import Flask, request, jsonify, make_response import torch from transformers import DistilBertTokenizer, DistilBertForSequenceClassification import os app = Flask(__name__) # Global variables to store model and tokenizer global_tokenizer = None global_model = None def load_model(): """Load the model and tokenizer""" global global_tokenizer, global_model try: print("Loading model and tokenizer...") MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english" global_tokenizer = DistilBertTokenizer.from_pretrained(MODEL_NAME) global_model = DistilBertForSequenceClassification.from_pretrained(MODEL_NAME) global_model.eval() print("Model loaded successfully!") return True except Exception as e: print(f"Error loading model: {str(e)}") return False # Load model at startup load_model() @app.route('/', methods=['GET']) def home(): """Home endpoint to check if API is running""" response = { 'status': 'API is running', 'model_status': 'loaded' if global_model is not None else 'not loaded', 'usage': { 'endpoint': '/classify', 'method': 'POST', 'body': {'subject': 'Your email subject here'} } } return jsonify(response) @app.route('/health', methods=['GET']) def health_check(): """Health check endpoint""" if global_model is None or global_tokenizer is None: return jsonify({'status': 'unhealthy', 'error': 'Model not loaded'}), 503 return jsonify({'status': 'healthy'}) @app.route('/classify', methods=['POST']) def classify_email(): """Classify email subject""" if global_model is None or global_tokenizer is None: return jsonify({'error': 'Model not loaded'}), 503 try: # Get request data data = request.get_json() if not data or 'subject' not in data: return jsonify({ 'error': 'No subject provided. Please send a JSON with "subject" field.' }), 400 # Get the subject subject = data['subject'] # Tokenize inputs = global_tokenizer(subject, return_tensors="pt", truncation=True, max_length=512) # Predict with torch.no_grad(): outputs = global_model(**inputs) logits = outputs.logits # Get probabilities probabilities = torch.nn.functional.softmax(logits, dim=1) predicted_class_id = logits.argmax().item() confidence = probabilities[0][predicted_class_id].item() # Map to custom labels CUSTOM_LABELS = { 0: "Business/Professional", 1: "Personal/Casual" } result = { 'category': CUSTOM_LABELS[predicted_class_id], 'confidence': round(confidence, 3), 'all_categories': { label: round(prob.item(), 3) for label, prob in zip(CUSTOM_LABELS.values(), probabilities[0]) } } return jsonify(result) except Exception as e: print(f"Error in classification: {str(e)}") return jsonify({'error': str(e)}), 500 if __name__ == '__main__': # Use port 7860 for Hugging Face Spaces port = int(os.environ.get('PORT', 7860)) app.run(host='0.0.0.0', port=port)