Update app.py
Browse files
app.py
CHANGED
@@ -7,63 +7,87 @@ from llama_parse import LlamaParse
|
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
9 |
|
10 |
-
#
|
11 |
llm = HuggingFaceInferenceAPI(model_name="tiiuae/falcon-7b-instruct")
|
12 |
parser = LlamaParse(api_key='llx-zKtsC5UBLs8DOApOsLluXMBdQhC75ea0Vs80SmPSjsmDzuhh', result_type='markdown')
|
|
|
|
|
13 |
file_extractor = {'.pdf': parser}
|
14 |
documents = SimpleDirectoryReader('data/', file_extractor=file_extractor).load_data()
|
15 |
|
|
|
16 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
17 |
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
|
18 |
query_engine = vector_index.as_query_engine(llm=llm)
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def query_with_retry(query, max_retries=3, wait_time=5):
|
22 |
for attempt in range(max_retries):
|
23 |
try:
|
24 |
start_time = datetime.now()
|
25 |
-
response = query_engine.query(query)
|
26 |
end_time = datetime.now()
|
27 |
duration = (end_time - start_time).total_seconds()
|
|
|
28 |
return response
|
29 |
except httpx.ReadTimeout:
|
30 |
if attempt < max_retries - 1:
|
|
|
31 |
time.sleep(wait_time)
|
32 |
else:
|
33 |
raise
|
34 |
except Exception as e:
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
gr.State() # Store chat history
|
59 |
-
],
|
60 |
-
outputs=[
|
61 |
-
gr.Chatbot(label="Chat"),
|
62 |
-
gr.State() # Output the updated chat history
|
63 |
-
],
|
64 |
-
title="Document-based Question Answering Chatbot",
|
65 |
-
description="Ask questions based on the documents you uploaded. This model answers queries using your uploaded PDFs.",
|
66 |
-
live=False # live=True can cause issues with chat interfaces
|
67 |
-
)
|
68 |
|
69 |
-
|
|
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
9 |
|
10 |
+
# LLM ve Parser Başlatma
|
11 |
llm = HuggingFaceInferenceAPI(model_name="tiiuae/falcon-7b-instruct")
|
12 |
parser = LlamaParse(api_key='llx-zKtsC5UBLs8DOApOsLluXMBdQhC75ea0Vs80SmPSjsmDzuhh', result_type='markdown')
|
13 |
+
|
14 |
+
# PDF dosyasını yükleyip indexleme işlemi
|
15 |
file_extractor = {'.pdf': parser}
|
16 |
documents = SimpleDirectoryReader('data/', file_extractor=file_extractor).load_data()
|
17 |
|
18 |
+
# Embedding Modeli ve Query Engine Başlatma
|
19 |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
20 |
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
|
21 |
query_engine = vector_index.as_query_engine(llm=llm)
|
22 |
|
23 |
+
# System Prompt: LLM'nin görevini belirlemek için
|
24 |
+
system_prompt = """
|
25 |
+
You are an AI assistant designed to answer questions about the Hund Ecosystem based on the uploaded PDF document.
|
26 |
+
Your primary responsibility is to provide detailed, accurate, and clear answers to user queries related to the content of the document.
|
27 |
+
For any question that is not related to the content of the document, kindly ask the user to refer to the Hund Ecosystem.
|
28 |
+
Please ensure to be polite and professional in your responses. If the question cannot be answered based on the document, kindly guide the user accordingly.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Sorgu işlemi için retry mekanizması
|
32 |
def query_with_retry(query, max_retries=3, wait_time=5):
|
33 |
for attempt in range(max_retries):
|
34 |
try:
|
35 |
start_time = datetime.now()
|
36 |
+
response = query_engine.query(query, system_message=system_prompt) # System prompt ekleniyor
|
37 |
end_time = datetime.now()
|
38 |
duration = (end_time - start_time).total_seconds()
|
39 |
+
print(f"Query completed in {duration:.2f} seconds.\n {response}")
|
40 |
return response
|
41 |
except httpx.ReadTimeout:
|
42 |
if attempt < max_retries - 1:
|
43 |
+
print(f"Timeout occurred. Retrying in {wait_time} seconds...")
|
44 |
time.sleep(wait_time)
|
45 |
else:
|
46 |
raise
|
47 |
except Exception as e:
|
48 |
+
print(f"An error occurred: {e}")
|
49 |
+
break
|
50 |
+
|
51 |
+
# Arayüz fonksiyonları
|
52 |
+
def chatbot_interface(input_text, history):
|
53 |
+
if input_text:
|
54 |
+
response = query_with_retry(input_text)
|
55 |
+
history.append(("Hundler", input_text))
|
56 |
+
history.append(("HundAI Chatbot", response))
|
57 |
+
return history, "" # Chat geçmişini döndür
|
58 |
+
|
59 |
+
def clear_all():
|
60 |
+
return [], "" # Sohbet geçmişini ve metni temizler
|
61 |
|
62 |
+
# Gradio Arayüzü
|
63 |
+
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css="""
|
64 |
+
footer {visibility: hidden;}
|
65 |
+
#input-box {background-color: #2e2e2e; color: #e5e5e5;}
|
66 |
+
#submit-btn {background-color: #607D8B; color: #fff; border-radius: 8px; padding: 10px 20px; font-weight: bold;}
|
67 |
+
#retry-btn {background-color: #8e8e8e; color: #fff; border-radius: 8px; padding: 10px 20px; font-weight: bold;}
|
68 |
+
#clear-btn {background-color: #f44336; color: #fff; border-radius: 8px; padding: 10px 20px; font-weight: bold;}
|
69 |
+
#undo-btn {background-color: #2196F3; color: #fff; border-radius: 8px; padding: 10px 20px; font-weight: bold;}
|
70 |
+
#output-box {background-color: #2e2e2e; color: #fff;}
|
71 |
+
#submit-btn:hover, #retry-btn:hover, #clear-btn:hover, #undo-btn:hover {cursor: pointer; opacity: 0.9;}
|
72 |
+
#buttons {display: flex; justify-content: space-between; font-size: 0.85em;}
|
73 |
+
""") as demo:
|
74 |
+
# Chatbot UI
|
75 |
+
with gr.Column():
|
76 |
+
chatbox = gr.Chatbot(label="Chatbot", elem_id="chatbox")
|
77 |
+
input_text = gr.Textbox(label="Ask a question", placeholder="Type your question here...", lines=2, elem_id="input-box")
|
78 |
+
|
79 |
+
# Butonlar: Retry, Clear, Undo butonları küçük şekilde düzenlendi
|
80 |
+
with gr.Row(elem_id="buttons"):
|
81 |
+
retry_btn = gr.Button("Retry", elem_id="retry-btn", scale=0.8)
|
82 |
+
clear_btn = gr.Button("Clear", elem_id="clear-btn", scale=0.8)
|
83 |
+
undo_btn = gr.Button("Undo", elem_id="undo-btn", scale=0.8)
|
84 |
+
|
85 |
+
submit_btn = gr.Button("Ask", elem_id="submit-btn")
|
86 |
|
87 |
+
# Button actions
|
88 |
+
submit_btn.click(chatbot_interface, inputs=[input_text, chatbox], outputs=[chatbox, input_text])
|
89 |
+
retry_btn.click(chatbot_interface, inputs=[input_text, chatbox], outputs=[chatbox, input_text]) # Retry işlemi
|
90 |
+
clear_btn.click(clear_all, outputs=[chatbox, input_text])
|
91 |
+
undo_btn.click(clear_all, outputs=[chatbox, input_text]) # Undo işlevi Clear olarak kullanıldı
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
demo.launch()
|