chatbotQA / app.py
aidevhund's picture
Update app.py
763ebc4 verified
raw
history blame
6.24 kB
from datetime import datetime
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_parse import LlamaParse
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
import os
from dotenv import load_dotenv
import gradio as gr
import markdowm as md
import base64
# Load environment variables
load_dotenv()
llm_models = [
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"tiiuae/falcon-7b-instruct",
]
embed_models = [
"BAAI/bge-small-en-v1.5", # 33.4M
"NeuML/pubmedbert-base-embeddings",
"BAAI/llm-embedder", # 109M
"BAAI/bge-large-en" # 335M
]
# Global variable for selected model
selected_llm_model_name = llm_models[0] # Default to the first model in the list
selected_embed_model_name = embed_models[0] # Default to the first model in the list
vector_index = None
# Initialize the parser
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
# Define file extractor with various common extensions
file_extractor = {
'.pdf': parser, # PDF documents
'.docx': parser, # Microsoft Word documents
'.doc': parser, # Older Microsoft Word documents
'.txt': parser, # Plain text files
'.csv': parser, # Comma-separated values files
'.xlsx': parser, # Microsoft Excel files (requires additional processing for tables)
'.pptx': parser, # Microsoft PowerPoint files (for slides)
'.html': parser, # HTML files (web pages)
# Image files for OCR processing
'.jpg': parser, # JPEG images
'.jpeg': parser, # JPEG images
'.png': parser, # PNG images
# Scanned documents in image formats
'.webp': parser, # WebP images
'.svg': parser, # SVG files (vector format, may contain embedded text)
}
# File processing function
def load_files(file_path: str, embed_model_name: str):
try:
global vector_index
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
print(f"Parsing done for {file_path}")
filename = os.path.basename(file_path)
return f"Ready to give response on {filename}"
except Exception as e:
return f"An error occurred: {e}"
# Function to handle the selected model from dropdown
def set_llm_model(selected_model):
global selected_llm_model_name
selected_llm_model_name = selected_model # Update the global variable
# print(f"Model selected: {selected_model_name}")
# return f"Model set to: {selected_model_name}"
# Respond function that uses the globally set selected model
def respond(message, history):
try:
# Initialize the LLM with the selected model
llm = HuggingFaceInferenceAPI(
model_name=selected_llm_model_name,
contextWindow=8192, # Context window size (typically max length of the model)
maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers)
temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info)
topP=0.9, # Top-p sampling to control diversity while retaining quality
frequencyPenalty=0.5, # Slight penalty to avoid repetition
presencePenalty=0.5, # Encourages exploration without digressing too much
token=os.getenv("TOKEN")
)
# Set up the query engine with the selected LLM
query_engine = vector_index.as_query_engine(llm=llm)
bot_message = query_engine.query(message)
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
return f"{selected_llm_model_name}:\n{str(bot_message)}"
except Exception as e:
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
return "Please upload a file."
return f"An error occurred: {e}"
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# UI Setup
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
gr.Markdown("# HundAI QA📄")
with gr.Tabs():
with gr.TabItem("Introduction"):
gr.Markdown(md.description)
with gr.TabItem("Chatbot"):
with gr.Accordion("IMPORTANT: READ ME FIRST", open=False):
guid = gr.Markdown(md.guide)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(file_count="single", type='filepath', label="Upload document")
# gr.Markdown("Dont know what to select check out in Intro tab")
embed_model_dropdown = gr.Dropdown(embed_models, label="Select Embedding", interactive=True)
with gr.Row():
btn = gr.Button("Submit", variant='primary')
clear = gr.ClearButton()
output = gr.Text(label='Vector Index')
llm_model_dropdown = gr.Dropdown(llm_models, label="Select LLM", interactive=True)
with gr.Column(scale=3):
gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=500),
theme = "soft",
show_progress='full',
# cache_mode='lazy',
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
)
# Set up Gradio interactions
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
# Launch the demo with a public link option
if __name__ == "__main__":
demo.launch()