Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
import gradio as gr
|
9 |
-
import markdowm as md
|
10 |
-
import base64
|
11 |
-
|
12 |
-
# Load environment variables
|
13 |
-
load_dotenv()
|
14 |
-
|
15 |
-
llm_models = [
|
16 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
-
"meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
19 |
-
"tiiuae/falcon-7b-instruct",
|
20 |
-
]
|
21 |
-
|
22 |
-
embed_models = [
|
23 |
-
"BAAI/bge-small-en-v1.5", # 33.4M
|
24 |
-
"NeuML/pubmedbert-base-embeddings",
|
25 |
-
"BAAI/llm-embedder", # 109M
|
26 |
-
"BAAI/bge-large-en" # 335M
|
27 |
-
]
|
28 |
-
|
29 |
-
# Global variable for selected model
|
30 |
-
selected_llm_model_name = llm_models[0] # Default to the first model in the list
|
31 |
-
selected_embed_model_name = embed_models[0] # Default to the first model in the list
|
32 |
-
vector_index = None
|
33 |
-
|
34 |
-
# Initialize the parser
|
35 |
-
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
36 |
-
# Define file extractor with various common extensions
|
37 |
-
file_extractor = {
|
38 |
-
'.pdf': parser, # PDF documents
|
39 |
-
'.docx': parser, # Microsoft Word documents
|
40 |
-
'.doc': parser, # Older Microsoft Word documents
|
41 |
-
'.txt': parser, # Plain text files
|
42 |
-
'.csv': parser, # Comma-separated values files
|
43 |
-
'.xlsx': parser, # Microsoft Excel files (requires additional processing for tables)
|
44 |
-
'.pptx': parser, # Microsoft PowerPoint files (for slides)
|
45 |
-
'.html': parser, # HTML files (web pages)
|
46 |
-
|
47 |
-
# Image files for OCR processing
|
48 |
-
'.jpg': parser, # JPEG images
|
49 |
-
'.jpeg': parser, # JPEG images
|
50 |
-
'.png': parser, # PNG images
|
51 |
-
|
52 |
-
|
53 |
-
# Scanned documents in image formats
|
54 |
-
'.webp': parser, # WebP images
|
55 |
-
'.svg': parser, # SVG files (vector format, may contain embedded text)
|
56 |
}
|
57 |
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
def
|
61 |
-
try:
|
62 |
-
global vector_index
|
63 |
-
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
64 |
-
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
65 |
-
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
66 |
-
print(f"Parsing done for {file_path}")
|
67 |
-
filename = os.path.basename(file_path)
|
68 |
-
return f"Ready to give response on {filename}"
|
69 |
-
except Exception as e:
|
70 |
-
return f"An error occurred: {e}"
|
71 |
-
|
72 |
-
|
73 |
-
# Function to handle the selected model from dropdown
|
74 |
-
def set_llm_model(selected_model):
|
75 |
global selected_llm_model_name
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
# Respond function
|
82 |
def respond(message, history):
|
83 |
try:
|
84 |
# Initialize the LLM with the selected model
|
85 |
llm = HuggingFaceInferenceAPI(
|
86 |
-
model_name=selected_llm_model_name,
|
87 |
-
contextWindow=8192,
|
88 |
-
maxTokens=1024,
|
89 |
-
temperature=0.3,
|
90 |
-
topP=0.9,
|
91 |
-
frequencyPenalty=0.5,
|
92 |
-
presencePenalty=0.5,
|
93 |
token=os.getenv("TOKEN")
|
94 |
)
|
95 |
|
@@ -104,10 +42,6 @@ def respond(message, history):
|
|
104 |
return "Please upload a file."
|
105 |
return f"An error occurred: {e}"
|
106 |
|
107 |
-
def encode_image(image_path):
|
108 |
-
with open(image_path, "rb") as image_file:
|
109 |
-
return base64.b64encode(image_file.read()).decode('utf-8')
|
110 |
-
|
111 |
# UI Setup
|
112 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
113 |
gr.Markdown("")
|
@@ -121,20 +55,24 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
121 |
with gr.Row():
|
122 |
with gr.Column(scale=1):
|
123 |
file_input = gr.File(file_count="single", type='filepath', label="Upload document")
|
124 |
-
# gr.Markdown("Dont know what to select check out in Intro tab")
|
125 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Select Embedding", interactive=True)
|
126 |
with gr.Row():
|
127 |
btn = gr.Button("Submit", variant='primary')
|
128 |
clear = gr.ClearButton()
|
129 |
output = gr.Text(label='Vector Index')
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
with gr.Column(scale=3):
|
132 |
gr.ChatInterface(
|
133 |
fn=respond,
|
134 |
chatbot=gr.Chatbot(height=500),
|
135 |
-
theme = "soft",
|
136 |
show_progress='full',
|
137 |
-
# cache_mode='lazy',
|
138 |
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
|
139 |
)
|
140 |
|
@@ -145,4 +83,4 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
145 |
|
146 |
# Launch the demo with a public link option
|
147 |
if __name__ == "__main__":
|
148 |
-
demo.launch()
|
|
|
1 |
+
# Mapping for display names and actual model names
|
2 |
+
llm_display_names = {
|
3 |
+
"tiiuae/falcon-7b-instruct": "HundAI",
|
4 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B",
|
5 |
+
"meta-llama/Meta-Llama-3-8B-Instruct": "Meta-Llama-3",
|
6 |
+
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral-7B",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
8 |
|
9 |
+
# Reverse mapping to retrieve original names
|
10 |
+
llm_reverse_mapping = {v: k for k, v in llm_display_names.items()}
|
11 |
|
12 |
+
# Update UI to use display names
|
13 |
+
def set_llm_model(display_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
global selected_llm_model_name
|
15 |
+
# Retrieve the original model name using the reverse mapping
|
16 |
+
selected_llm_model_name = llm_reverse_mapping.get(display_name, display_name)
|
17 |
+
print(f"Model selected: {selected_llm_model_name}")
|
|
|
18 |
|
19 |
+
# Respond function remains unchanged
|
20 |
def respond(message, history):
|
21 |
try:
|
22 |
# Initialize the LLM with the selected model
|
23 |
llm = HuggingFaceInferenceAPI(
|
24 |
+
model_name=selected_llm_model_name, # Use the backend model name
|
25 |
+
contextWindow=8192,
|
26 |
+
maxTokens=1024,
|
27 |
+
temperature=0.3,
|
28 |
+
topP=0.9,
|
29 |
+
frequencyPenalty=0.5,
|
30 |
+
presencePenalty=0.5,
|
31 |
token=os.getenv("TOKEN")
|
32 |
)
|
33 |
|
|
|
42 |
return "Please upload a file."
|
43 |
return f"An error occurred: {e}"
|
44 |
|
|
|
|
|
|
|
|
|
45 |
# UI Setup
|
46 |
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
|
47 |
gr.Markdown("")
|
|
|
55 |
with gr.Row():
|
56 |
with gr.Column(scale=1):
|
57 |
file_input = gr.File(file_count="single", type='filepath', label="Upload document")
|
|
|
58 |
embed_model_dropdown = gr.Dropdown(embed_models, label="Select Embedding", interactive=True)
|
59 |
with gr.Row():
|
60 |
btn = gr.Button("Submit", variant='primary')
|
61 |
clear = gr.ClearButton()
|
62 |
output = gr.Text(label='Vector Index')
|
63 |
+
|
64 |
+
# Use display names for LLM dropdown
|
65 |
+
llm_model_dropdown = gr.Dropdown(
|
66 |
+
list(llm_display_names.values()), # Display names
|
67 |
+
label="Select LLM",
|
68 |
+
interactive=True
|
69 |
+
)
|
70 |
+
|
71 |
with gr.Column(scale=3):
|
72 |
gr.ChatInterface(
|
73 |
fn=respond,
|
74 |
chatbot=gr.Chatbot(height=500),
|
|
|
75 |
show_progress='full',
|
|
|
76 |
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
|
77 |
)
|
78 |
|
|
|
83 |
|
84 |
# Launch the demo with a public link option
|
85 |
if __name__ == "__main__":
|
86 |
+
demo.launch()
|