Update app.py
Browse files
app.py
CHANGED
@@ -12,37 +12,64 @@ import base64
|
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
-
|
16 |
-
llm_display_names = {
|
17 |
-
"tiiuae/falcon-7b-instruct": "HundAI",
|
18 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B",
|
19 |
-
"meta-llama/Meta-Llama-3-8B-Instruct": "Meta-Llama-
|
20 |
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral-7B",
|
|
|
21 |
}
|
|
|
22 |
embed_models = [
|
23 |
"BAAI/bge-small-en-v1.5", # 33.4M
|
24 |
"NeuML/pubmedbert-base-embeddings",
|
25 |
-
"BAAI/llm-embedder",
|
26 |
-
"BAAI/bge-large-en"
|
27 |
]
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
def set_llm_model(
|
34 |
global selected_llm_model_name
|
35 |
-
|
36 |
-
selected_llm_model_name = llm_reverse_mapping.get(display_name, display_name)
|
37 |
-
print(f"Model selected: {selected_llm_model_name}")
|
38 |
|
39 |
-
# Respond function
|
40 |
def respond(message, history):
|
41 |
try:
|
42 |
-
# Initialize the LLM with the selected model
|
43 |
llm = HuggingFaceInferenceAPI(
|
44 |
-
model_name=selected_llm_model_name,
|
45 |
-
contextWindow=8192,
|
46 |
maxTokens=1024,
|
47 |
temperature=0.3,
|
48 |
topP=0.9,
|
@@ -50,13 +77,9 @@ def respond(message, history):
|
|
50 |
presencePenalty=0.5,
|
51 |
token=os.getenv("TOKEN")
|
52 |
)
|
53 |
-
|
54 |
-
# Set up the query engine with the selected LLM
|
55 |
query_engine = vector_index.as_query_engine(llm=llm)
|
56 |
bot_message = query_engine.query(message)
|
57 |
-
|
58 |
-
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
|
59 |
-
return f"{selected_llm_model_name}:\n{str(bot_message)}"
|
60 |
except Exception as e:
|
61 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
62 |
return "Please upload a file."
|
@@ -80,27 +103,18 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]),
|
|
80 |
btn = gr.Button("Submit", variant='primary')
|
81 |
clear = gr.ClearButton()
|
82 |
output = gr.Text(label='Vector Index')
|
83 |
-
|
84 |
-
# Use display names for LLM dropdown
|
85 |
-
llm_model_dropdown = gr.Dropdown(
|
86 |
-
list(llm_display_names.values()), # Display names
|
87 |
-
label="Select LLM",
|
88 |
-
interactive=True
|
89 |
-
)
|
90 |
-
|
91 |
with gr.Column(scale=3):
|
92 |
gr.ChatInterface(
|
93 |
fn=respond,
|
94 |
chatbot=gr.Chatbot(height=500),
|
95 |
-
|
96 |
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
|
97 |
)
|
98 |
|
99 |
-
# Set up Gradio interactions
|
100 |
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
|
101 |
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
102 |
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
103 |
|
104 |
-
# Launch the demo with a public link option
|
105 |
if __name__ == "__main__":
|
106 |
demo.launch()
|
|
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
14 |
|
15 |
+
llm_models = {
|
|
|
|
|
16 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B",
|
17 |
+
"meta-llama/Meta-Llama-3-8B-Instruct": "Meta-Llama-8B",
|
18 |
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral-7B",
|
19 |
+
"tiiuae/falcon-7b-instruct": "HundAI", # Model renamed for UI display
|
20 |
}
|
21 |
+
|
22 |
embed_models = [
|
23 |
"BAAI/bge-small-en-v1.5", # 33.4M
|
24 |
"NeuML/pubmedbert-base-embeddings",
|
25 |
+
"BAAI/llm-embedder", # 109M
|
26 |
+
"BAAI/bge-large-en" # 335M
|
27 |
]
|
28 |
|
29 |
+
# Global variable for selected model
|
30 |
+
selected_llm_model_name = list(llm_models.keys())[0] # Default to the first model in the dictionary
|
31 |
+
vector_index = None
|
32 |
+
|
33 |
+
# Initialize the parser
|
34 |
+
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
|
35 |
+
file_extractor = {
|
36 |
+
'.pdf': parser,
|
37 |
+
'.docx': parser,
|
38 |
+
'.txt': parser,
|
39 |
+
'.csv': parser,
|
40 |
+
'.xlsx': parser,
|
41 |
+
'.pptx': parser,
|
42 |
+
'.html': parser,
|
43 |
+
'.jpg': parser,
|
44 |
+
'.jpeg': parser,
|
45 |
+
'.png': parser,
|
46 |
+
'.webp': parser,
|
47 |
+
'.svg': parser,
|
48 |
+
}
|
49 |
+
|
50 |
+
# File processing function
|
51 |
+
def load_files(file_path: str, embed_model_name: str):
|
52 |
+
try:
|
53 |
+
global vector_index
|
54 |
+
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
55 |
+
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
56 |
+
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
57 |
+
filename = os.path.basename(file_path)
|
58 |
+
return f"Ready to give response on {filename}"
|
59 |
+
except Exception as e:
|
60 |
+
return f"An error occurred: {e}"
|
61 |
|
62 |
+
# Function to handle the selected model from dropdown
|
63 |
+
def set_llm_model(selected_model):
|
64 |
global selected_llm_model_name
|
65 |
+
selected_llm_model_name = next(key for key, value in llm_models.items() if value == selected_model)
|
|
|
|
|
66 |
|
67 |
+
# Respond function
|
68 |
def respond(message, history):
|
69 |
try:
|
|
|
70 |
llm = HuggingFaceInferenceAPI(
|
71 |
+
model_name=selected_llm_model_name,
|
72 |
+
contextWindow=8192,
|
73 |
maxTokens=1024,
|
74 |
temperature=0.3,
|
75 |
topP=0.9,
|
|
|
77 |
presencePenalty=0.5,
|
78 |
token=os.getenv("TOKEN")
|
79 |
)
|
|
|
|
|
80 |
query_engine = vector_index.as_query_engine(llm=llm)
|
81 |
bot_message = query_engine.query(message)
|
82 |
+
return f"{llm_models[selected_llm_model_name]}:\n{str(bot_message)}"
|
|
|
|
|
83 |
except Exception as e:
|
84 |
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
|
85 |
return "Please upload a file."
|
|
|
103 |
btn = gr.Button("Submit", variant='primary')
|
104 |
clear = gr.ClearButton()
|
105 |
output = gr.Text(label='Vector Index')
|
106 |
+
llm_model_dropdown = gr.Dropdown(list(llm_models.values()), label="Select LLM", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
with gr.Column(scale=3):
|
108 |
gr.ChatInterface(
|
109 |
fn=respond,
|
110 |
chatbot=gr.Chatbot(height=500),
|
111 |
+
theme="soft",
|
112 |
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
|
113 |
)
|
114 |
|
|
|
115 |
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
|
116 |
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
|
117 |
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
|
118 |
|
|
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch()
|