File size: 13,273 Bytes
5592e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
#@title <-- Just run the cell (config edge TTS)
edge_folder="."
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
from deep_translator import GoogleTranslator
from lang_data import languages,male_voice_list,female_voice_list
def translate_text(text, Language):
# print("calling translate")
target_language=languages[Language]
if Language == "Chinese":
target_language='zh-CN'
translator = GoogleTranslator(target=target_language)
translation = translator.translate(text.strip())
t_text=str(translation)
# print(f"{t_text}---{Language}----{target_language}")
return t_text
def chunks_sentences(paragraph, join_limit=2):
sentences = sent_tokenize(paragraph)
# Initialize an empty list to store the new sentences
new_sentences = []
# Iterate through the list of sentences in steps of 'join_limit'
for i in range(0, len(sentences), join_limit):
# Join the sentences with a space between them
new_sentence = ' '.join(sentences[i:i + join_limit])
new_sentences.append(new_sentence)
return new_sentences
def calculate_rate_string(input_value):
rate = (input_value - 1) * 100
sign = '+' if input_value >= 1 else '-'
return f"{sign}{abs(int(rate))}"
def make_chunks(input_text, language):
language="English"
if language == "English":
filtered_list=chunks_sentences(input_text, join_limit=2)
# temp_list = input_text.strip().split(".")
# filtered_list = [element.strip() + '.' for element in temp_list[:-1] if element.strip() and element.strip() != "'" and element.strip() != '"']
# if temp_list[-1].strip():
# filtered_list.append(temp_list[-1].strip())
return filtered_list
import re
import uuid
def tts_file_name(text):
if text.endswith("."):
text = text[:-1]
text = text.lower()
text = text.strip()
text = text.replace(" ","_")
truncated_text = text[:25] if len(text) > 25 else text if len(text) > 0 else "empty"
random_string = uuid.uuid4().hex[:8].upper()
file_name = f"{edge_folder}/edge_tts_voice/{truncated_text}_{random_string}.mp3"
return file_name
from pydub import AudioSegment
import shutil
import os
def merge_audio_files(audio_paths, output_path):
# Initialize an empty AudioSegment
merged_audio = AudioSegment.silent(duration=0)
# Iterate through each audio file path
for audio_path in audio_paths:
# Load the audio file using Pydub
audio = AudioSegment.from_file(audio_path)
# Append the current audio file to the merged_audio
merged_audio += audio
# Export the merged audio to the specified output path
merged_audio.export(output_path, format="mp3")
def edge_free_tts(chunks_list,speed,voice_name,save_path,translate_text_flag,Language):
# print(voice_name)
# print(chunks_list)
store_text=""
if len(chunks_list)>1:
chunk_audio_list=[]
if os.path.exists(f"{edge_folder}/edge_tts_voice"):
shutil.rmtree(f"{edge_folder}/edge_tts_voice")
os.mkdir(f"{edge_folder}/edge_tts_voice")
k=1
for i in chunks_list:
# print(i)
if translate_text_flag:
text=translate_text(i, Language)
else:
text=i
store_text+=text+" "
text=text.replace('"',"")
edge_command=f'edge-tts --rate={calculate_rate_string(speed)}% --voice {voice_name} --text "{text}" --write-media {edge_folder}/edge_tts_voice/{k}.mp3'
var1=os.system(edge_command)
if var1==0:
pass
else:
print(f"Failed: {i}")
print(edge_command)
chunk_audio_list.append(f"{edge_folder}/edge_tts_voice/{k}.mp3")
k+=1
# print(chunk_audio_list)
merge_audio_files(chunk_audio_list, save_path)
else:
if translate_text_flag:
text=translate_text(chunks_list[0], Language)
else:
text=chunks_list[0]
text=text.replace('"',"")
store_text+=text+" "
edge_command=f'edge-tts --rate={calculate_rate_string(speed)}% --voice {voice_name} --text "{text}" --write-media {save_path}'
var2=os.system(edge_command)
if var2==0:
pass
else:
print(f"Failed: {chunks_list[0]}")
print(edge_command)
with open("./temp.txt", "w", encoding="utf-8") as text_file:
text_file.write(store_text)
return save_path
# speed = 1 # @param {type: "number"}
# translate_text_flag = True # @param {type:"boolean"}
# long_sentence = True # @param {type:"boolean"}
# from IPython.display import clear_output
# from IPython.display import Audio
if not os.path.exists(f"{edge_folder}/audio"):
os.mkdir(f"{edge_folder}/audio")
import uuid
def random_audio_name_generate():
random_uuid = uuid.uuid4()
audio_extension = ".mp3"
random_audio_name = str(random_uuid)[:8] + audio_extension
return random_audio_name
def edge_tts_pipeline(input_text,Language='English',voice_name=None,Gender='Male',translate_text_flag=True,no_silence=False,speed=1,tts_save_path="",long_sentence=True):
# print("calling gradio_talk")
# global long_sentence,translate_text_flag,Language,speed,voice_name,Gender
global male_voice_list,female_voice_list
# long_sentence=True
# translate_text_flag=True
# speed=1
if long_sentence==False:
if len(input_text)>500:
long_sentence=True
if voice_name==None:
if Gender=="Male":
voice_name=male_voice_list[Language]
if Gender=="Female":
voice_name=female_voice_list[Language]
if long_sentence==True and translate_text_flag==True:
chunks_list=make_chunks(input_text,Language)
elif long_sentence==True and translate_text_flag==False:
chunks_list=make_chunks(input_text,"English")
else:
chunks_list=[input_text]
temp_save_path=f"{edge_folder}/audio/"+random_audio_name_generate()
save_path=temp_save_path.lower().replace(".mp3",".wav")
# print(chunks_list,speed,voice_name,save_path,translate_text_flag,Language)
edge_save_path=edge_free_tts(chunks_list,speed,voice_name,temp_save_path,translate_text_flag,Language)
mp3_to_wav(edge_save_path, save_path)
audio_return_path=save_path
if no_silence:
clean_path=f"{edge_folder}/audio/"+random_audio_name_generate().replace(".mp3",".wav")
remove_silence(save_path,clean_path)
audio_return_path=clean_path
# return clean_path
if tts_save_path=="":
return audio_return_path
else:
shutil.copyfile(audio_return_path,tts_save_path)
return audio_return_path
def talk(input_text):
# global long_sentence,translate_text_flag,Language,speed,voice_name,Gender
global Language, Gender,male_voice_list,female_voice_list
global no_silence
long_sentence=True
translate_text_flag=False
speed=1
if Gender=="Male":
voice_name=male_voice_list[Language]
if Gender=="Female":
voice_name=female_voice_list[Language]
if long_sentence==True and translate_text_flag==True:
chunks_list=make_chunks(input_text,Language)
elif long_sentence==True and translate_text_flag==False:
chunks_list=make_chunks(input_text,"English")
else:
chunks_list=[input_text]
temp_save_path=f"{edge_folder}/audio/"+random_audio_name_generate()
# print(f"temp_save_path: {temp_save_path}")
save_path=temp_save_path.replace(".mp3",".wav")
# print(f"save_path: {save_path}")
edge_save_path=edge_free_tts(chunks_list,speed,voice_name,temp_save_path,translate_text_flag,Language)
mp3_to_wav(edge_save_path, save_path)
if no_silence:
clean_path=f"{edge_folder}/audio/"+random_audio_name_generate().replace(".mp3",".wav")
remove_silence(save_path,clean_path)
return clean_path
return save_path
from pydub import AudioSegment
from pydub.silence import split_on_silence
import os
def remove_silence(file_path,output_path):
# Extract file name and format from the provided path
file_name = os.path.basename(file_path)
audio_format = "wav"
# Reading and splitting the audio file into chunks
sound = AudioSegment.from_file(file_path, format=audio_format)
audio_chunks = split_on_silence(sound,
min_silence_len=100,
silence_thresh=-45,
keep_silence=50)
# Putting the file back together
combined = AudioSegment.empty()
for chunk in audio_chunks:
combined += chunk
combined.export(output_path, format=audio_format)
print(f"Remove silence successfully: {output_path}")
return output_path
from pydub import AudioSegment
def mp3_to_wav(mp3_file, wav_file):
# Load the MP3 file
# print("calling mp3_to_wav")
# print(mp3_file,wav_file)
audio = AudioSegment.from_mp3(mp3_file)
# Export the audio to WAV format
audio.export(wav_file, format="wav")
###use case
# from microsoft_tts import edge_tts_pipeline
# def tts(text, Language='English',voice_name=None, tts_save_path='', Gender='Male', translate_text_flag=False, no_silence=True, speed=1.0, long_sentence=True):
# edge_save_path = edge_tts_pipeline(text, Language,voice_name, Gender, translate_text_flag=translate_text_flag,
# no_silence=no_silence, speed=speed, tts_save_path=tts_save_path,
# long_sentence=long_sentence)
# return edge_save_path
# text="Machine learning is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop conventional algorithms to perform the needed tasks."
# save_path = tts(text, Language='English',Gender="Male")
# print(save_path)
# import simpleaudio as sa
# def play_sound(filename):
# wave_obj = sa.WaveObject.from_wave_file(filename)
# play_obj = wave_obj.play()
# play_obj.wait_done()
# play_sound(save_path)
# edge_save_path=talk(text)
# print(f"Audio File Save at: {edge_save_path}")
# text = "a quick brown fox jumps over the lazy dog and the dog barks loudly"
# Language = "English" # @param ['English','Hindi','Bengali','Afrikaans', 'Amharic', 'Arabic', 'Azerbaijani', 'Bulgarian', 'Bosnian', 'Catalan', 'Czech', 'Welsh', 'Danish', 'German', 'Greek', 'Spanish', 'French', 'Irish', 'Galician', 'Gujarati', 'Hebrew', 'Croatian', 'Hungarian', 'Indonesian', 'Icelandic', 'Italian', 'Japanese', 'Javanese', 'Georgian', 'Kazakh', 'Khmer', 'Kannada', 'Korean', 'Lao', 'Lithuanian', 'Latvian', 'Macedonian', 'Malayalam', 'Mongolian', 'Marathi', 'Malay', 'Maltese', 'Burmese', 'Norwegian Bokmål', 'Nepali', 'Dutch', 'Polish', 'Pashto', 'Portuguese', 'Romanian', 'Russian', 'Sinhala', 'Slovak', 'Slovenian', 'Somali', 'Albanian', 'Serbian', 'Sundanese', 'Swedish', 'Swahili', 'Tamil', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Uzbek', 'Vietnamese', 'Chinese', 'Zulu']
# no_silence = False
# Gender = "Male"# @param ['Male', 'Female']
# translate_text_flag=True
# no_silence=True
# speed=1
# tts_save_path='temp.wav'
# edge_save_path=edge_tts_pipeline(text,Language,Gender,translate_text_flag=translate_text_flag,no_silence=no_silence,speed=speed,tts_save_path=tts_save_path)
# print(f"Audio File Save at: {edge_save_path}")
# from microsoft_tts import edge_tts_pipeline
# def tts(text,tts_save_path=''):
# # text = "a quick brown fox jumps over the lazy dog and the dog barks loudly"
# Language = "English" # @param ['English','Hindi','Bengali','Afrikaans', 'Amharic', 'Arabic', 'Azerbaijani', 'Bulgarian', 'Bosnian', 'Catalan', 'Czech', 'Welsh', 'Danish', 'German', 'Greek', 'Spanish', 'French', 'Irish', 'Galician', 'Gujarati', 'Hebrew', 'Croatian', 'Hungarian', 'Indonesian', 'Icelandic', 'Italian', 'Japanese', 'Javanese', 'Georgian', 'Kazakh', 'Khmer', 'Kannada', 'Korean', 'Lao', 'Lithuanian', 'Latvian', 'Macedonian', 'Malayalam', 'Mongolian', 'Marathi', 'Malay', 'Maltese', 'Burmese', 'Norwegian Bokmål', 'Nepali', 'Dutch', 'Polish', 'Pashto', 'Portuguese', 'Romanian', 'Russian', 'Sinhala', 'Slovak', 'Slovenian', 'Somali', 'Albanian', 'Serbian', 'Sundanese', 'Swedish', 'Swahili', 'Tamil', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Uzbek', 'Vietnamese', 'Chinese', 'Zulu']
# no_silence = False
# Gender = "Male"# @param ['Male', 'Female']
# translate_text_flag=True
# no_silence=True
# speed=1
# # tts_save_path='temp.wav'
# long_sentence=True
# edge_save_path=edge_tts_pipeline(text,Language,Gender,translate_text_flag=translate_text_flag,no_silence=no_silence,speed=speed,tts_save_path=tts_save_path,long_sentence=long_sentence)
# print(f"Audio File Save at: {edge_save_path}")
# return edge_save_path
|