Spaces:
Sleeping
Sleeping
import gradio as gr | |
from openai import OpenAI | |
import os | |
import json | |
css = ''' | |
.gradio-container{max-width: 1000px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
# Access token for Hugging Face | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
# Initialize the client for the OpenAI model | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
# File path for storing user preferences | |
USER_DATA_PATH = "user_data.json" | |
# Load user preferences if they exist | |
def load_user_preferences(): | |
if os.path.exists(USER_DATA_PATH): | |
with open(USER_DATA_PATH, "r") as file: | |
return json.load(file) | |
return {} | |
# Save user preferences | |
def save_user_preferences(data): | |
with open(USER_DATA_PATH, "w") as file: | |
json.dump(data, file) | |
# Respond function that generates the assistant's reply | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Load user preferences | |
user_data = load_user_preferences() | |
# Custom welcome message or save user input | |
if message.lower().startswith("my name is"): | |
user_data["name"] = message.split("is")[-1].strip() | |
save_user_preferences(user_data) | |
response = f"Nice to meet you, {user_data['name']}! How can I assist you with your travel plans today?" | |
yield response | |
return | |
if message.lower().startswith("i like to travel to"): | |
user_data["favorite_destination"] = message.split("to")[-1].strip() | |
save_user_preferences(user_data) | |
response = f"Got it! I noted that you enjoy traveling to {user_data['favorite_destination']}." | |
yield response | |
return | |
if message.lower().startswith("my budget is"): | |
user_data["budget"] = message.split("is")[-1].strip() | |
save_user_preferences(user_data) | |
response = f"Understood! I'll keep your budget of {user_data['budget']} in mind when suggesting travel options." | |
yield response | |
return | |
# Use user's name and preferences in responses if available | |
name = user_data.get("name", "Traveler") | |
favorite_destination = user_data.get("favorite_destination", "various places") | |
budget = user_data.get("budget", "not specified") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the current user message | |
messages.append({"role": "user", "content": message}) | |
response = f"Hello {name}! You mentioned you like traveling to {favorite_destination}. Let's plan something exciting within your budget of {budget}.\n" | |
# Generate a response using the OpenAI client | |
for message in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly travel assistant. Offer personalized travel tips and remember user preferences.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
), | |
], | |
css=css, | |
theme="allenai/gradio-theme", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |