Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
-
import json
|
5 |
|
6 |
css = '''
|
7 |
.gradio-container{max-width: 1000px !important}
|
@@ -11,31 +12,13 @@ footer {
|
|
11 |
}
|
12 |
'''
|
13 |
|
14 |
-
# Access token for Hugging Face
|
15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
16 |
|
17 |
-
# Initialize the client for the OpenAI model
|
18 |
client = OpenAI(
|
19 |
base_url="https://api-inference.huggingface.co/v1/",
|
20 |
api_key=ACCESS_TOKEN,
|
21 |
)
|
22 |
|
23 |
-
# File path for storing user preferences
|
24 |
-
USER_DATA_PATH = "user_data.json"
|
25 |
-
|
26 |
-
# Load user preferences if they exist
|
27 |
-
def load_user_preferences():
|
28 |
-
if os.path.exists(USER_DATA_PATH):
|
29 |
-
with open(USER_DATA_PATH, "r") as file:
|
30 |
-
return json.load(file)
|
31 |
-
return {}
|
32 |
-
|
33 |
-
# Save user preferences
|
34 |
-
def save_user_preferences(data):
|
35 |
-
with open(USER_DATA_PATH, "w") as file:
|
36 |
-
json.dump(data, file)
|
37 |
-
|
38 |
-
# Respond function that generates the assistant's reply
|
39 |
def respond(
|
40 |
message,
|
41 |
history: list[tuple[str, str]],
|
@@ -44,36 +27,6 @@ def respond(
|
|
44 |
temperature,
|
45 |
top_p,
|
46 |
):
|
47 |
-
# Load user preferences
|
48 |
-
user_data = load_user_preferences()
|
49 |
-
|
50 |
-
# Custom welcome message or save user input
|
51 |
-
if message.lower().startswith("my name is"):
|
52 |
-
user_data["name"] = message.split("is")[-1].strip()
|
53 |
-
save_user_preferences(user_data)
|
54 |
-
response = f"Nice to meet you, {user_data['name']}! How can I assist you with your travel plans today?"
|
55 |
-
yield response
|
56 |
-
return
|
57 |
-
|
58 |
-
if message.lower().startswith("i like to travel to"):
|
59 |
-
user_data["favorite_destination"] = message.split("to")[-1].strip()
|
60 |
-
save_user_preferences(user_data)
|
61 |
-
response = f"Got it! I noted that you enjoy traveling to {user_data['favorite_destination']}."
|
62 |
-
yield response
|
63 |
-
return
|
64 |
-
|
65 |
-
if message.lower().startswith("my budget is"):
|
66 |
-
user_data["budget"] = message.split("is")[-1].strip()
|
67 |
-
save_user_preferences(user_data)
|
68 |
-
response = f"Understood! I'll keep your budget of {user_data['budget']} in mind when suggesting travel options."
|
69 |
-
yield response
|
70 |
-
return
|
71 |
-
|
72 |
-
# Use user's name and preferences in responses if available
|
73 |
-
name = user_data.get("name", "Traveler")
|
74 |
-
favorite_destination = user_data.get("favorite_destination", "various places")
|
75 |
-
budget = user_data.get("budget", "not specified")
|
76 |
-
|
77 |
messages = [{"role": "system", "content": system_message}]
|
78 |
|
79 |
for val in history:
|
@@ -82,13 +35,11 @@ def respond(
|
|
82 |
if val[1]:
|
83 |
messages.append({"role": "assistant", "content": val[1]})
|
84 |
|
85 |
-
# Add the current user message
|
86 |
messages.append({"role": "user", "content": message})
|
87 |
|
88 |
-
response =
|
89 |
-
|
90 |
-
|
91 |
-
for message in client.chat.completions.create(
|
92 |
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
93 |
max_tokens=max_tokens,
|
94 |
stream=True,
|
@@ -97,17 +48,14 @@ def respond(
|
|
97 |
messages=messages,
|
98 |
):
|
99 |
token = message.choices[0].delta.content
|
|
|
100 |
response += token
|
101 |
yield response
|
102 |
|
103 |
-
# Gradio interface
|
104 |
demo = gr.ChatInterface(
|
105 |
respond,
|
106 |
additional_inputs=[
|
107 |
-
gr.Textbox(
|
108 |
-
value="You are a friendly travel assistant. Offer personalized travel tips and remember user preferences.",
|
109 |
-
label="System message"
|
110 |
-
),
|
111 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
112 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
113 |
gr.Slider(
|
@@ -117,10 +65,10 @@ demo = gr.ChatInterface(
|
|
117 |
step=0.05,
|
118 |
label="Top-P",
|
119 |
),
|
|
|
120 |
],
|
121 |
css=css,
|
122 |
theme="allenai/gradio-theme",
|
123 |
)
|
124 |
-
|
125 |
if __name__ == "__main__":
|
126 |
demo.launch()
|
|
|
1 |
+
#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb
|
2 |
+
#huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main
|
3 |
import gradio as gr
|
4 |
from openai import OpenAI
|
5 |
import os
|
|
|
6 |
|
7 |
css = '''
|
8 |
.gradio-container{max-width: 1000px !important}
|
|
|
12 |
}
|
13 |
'''
|
14 |
|
|
|
15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
16 |
|
|
|
17 |
client = OpenAI(
|
18 |
base_url="https://api-inference.huggingface.co/v1/",
|
19 |
api_key=ACCESS_TOKEN,
|
20 |
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def respond(
|
23 |
message,
|
24 |
history: list[tuple[str, str]],
|
|
|
27 |
temperature,
|
28 |
top_p,
|
29 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
messages = [{"role": "system", "content": system_message}]
|
31 |
|
32 |
for val in history:
|
|
|
35 |
if val[1]:
|
36 |
messages.append({"role": "assistant", "content": val[1]})
|
37 |
|
|
|
38 |
messages.append({"role": "user", "content": message})
|
39 |
|
40 |
+
response = ""
|
41 |
+
|
42 |
+
for message in client.chat.completions.create(
|
|
|
43 |
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
44 |
max_tokens=max_tokens,
|
45 |
stream=True,
|
|
|
48 |
messages=messages,
|
49 |
):
|
50 |
token = message.choices[0].delta.content
|
51 |
+
|
52 |
response += token
|
53 |
yield response
|
54 |
|
|
|
55 |
demo = gr.ChatInterface(
|
56 |
respond,
|
57 |
additional_inputs=[
|
58 |
+
gr.Textbox(value="", label="System message"),
|
|
|
|
|
|
|
59 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
60 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
61 |
gr.Slider(
|
|
|
65 |
step=0.05,
|
66 |
label="Top-P",
|
67 |
),
|
68 |
+
|
69 |
],
|
70 |
css=css,
|
71 |
theme="allenai/gradio-theme",
|
72 |
)
|
|
|
73 |
if __name__ == "__main__":
|
74 |
demo.launch()
|