File size: 1,739 Bytes
0ff9d60
c65c805
0ff9d60
 
 
 
491b538
c65c805
0ff9d60
765f872
c65c805
0ff9d60
 
c65c805
0ff9d60
 
c65c805
0ff9d60
 
 
 
c65c805
0ff9d60
 
 
c65c805
0ff9d60
 
 
c65c805
0ff9d60
 
 
 
c65c805
0ff9d60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import spaces
import os
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login


# Get the Hugging Face token from environment variables
huggingface_token = os.getenv("HF_TOKEN")

if huggingface_token is None:
    raise ValueError("Hugging Face token not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable.")

# Login using the Hugging Face token
login(huggingface_token)

# Load the model and tokenizer
model_name = "meta-llama/Meta-Llama-3.1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Move the model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

@spaces.GPU(duration=120)  # Request GPU resources for 120 seconds
# Define the prediction function
def predict(input_text, temperature=0.2):
    try:
        inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
        outputs = model.generate(inputs, temperature=temperature, max_new_tokens=50)
        prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return prediction
    except Exception as e:
        return str(e)

# Create Gradio interface
interface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter text here...", label="Input Text"),
        gr.Slider(minimum=0, maximum=1, value=0.2, label="Temperature")
    ],
    outputs=gr.Textbox(label="Output Text"),
    title="Transformer Model Prediction",
    description="Enter text and adjust the temperature to get predictions from the transformer model."
)

# Launch the Gradio app
interface.launch(server_name="0.0.0.0", server_port=7860)