File size: 6,482 Bytes
92e31e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import time
from utils.levels import complete_level, render_page, initialize_level
from utils.login import get_login, initialize_login
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import RendererAgg
_lock = RendererAgg.lock
import base64
from io import BytesIO
from PIL import Image, ImageFilter
import lightgbm as lgb

initialize_login()
initialize_level()

LEVEL = 3

File_PATH = 'datasets/Building_forcasting.csv'

def process_file(csv_file):
    data = pd.read_csv(csv_file, index_col='Timestamp')
    data.index = pd.to_datetime(data.index)
    data = data.fillna(0)
    return data


def model_predict(data, model_choice, train_size, tune_model):
    if model_choice == 'LightGBM':
        model = lgb.LGBMRegressor() if not tune_model else lgb.LGBMRegressor(**tuned_parameters('lgbm'))
    elif model_choice == 'Random Forest':
        model = RandomForestRegressor(n_estimators=100, random_state=42) if not tune_model else RandomForestRegressor(**tuned_parameters('rf'))

    X, y = create_model_inputs(data, 288, 288)

    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size/100, random_state=42, shuffle=False)

    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    return y_test, y_pred, model


def create_model_inputs(data, lag, mean_period):
    df_processed = data.copy()
    df_processed['PV_Output_lag'] = df_processed['PV_Output'].shift(lag)
    df_processed['PV_Output_mean'] = df_processed['PV_Output'].rolling(window=mean_period).mean()

    X = df_processed[['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag', 'PV_Output_mean']].dropna()
    y = df_processed[['PV_Output']].loc[X.index]

    return X, y


def show_output(y_test, y_pred):
    st.sidebar.subheader("Model Performance")
    st.sidebar.write(f"Test R2 score: {r2_score(y_test, y_pred):.2f}")

    fig, axs = plt.subplots(3, figsize=(12, 18))
    axs[0].plot(y_test.index, y_pred/1000, label='Predicted')
    axs[0].plot(y_test.index, y_test['PV_Output']/1000, label='Actual')
    axs[0].legend()
    axs[0].set_title('Prediction vs Actual (Solar Power Generation)')
    axs[0].set_xlabel('Date')
    axs[0].set_ylabel('Solar Power Generation (kW)')

    axs[1].plot(y_test.index, y_pred/1000, label='Predicted')
    axs[1].set_title('Predicted Solar Power Generation')
    axs[1].set_xlabel('Date')
    axs[1].set_ylabel('Solar Power Generation (kW)')

    axs[2].plot(y_test.index, y_test['PV_Output']/1000, label='Actual')
    axs[2].set_title('Actual Solar Power Generation')
    axs[2].set_xlabel('Date')
    axs[2].set_ylabel('Solar Power Generation (kW)')

    fig.tight_layout()
    with _lock:
        st.pyplot(fig)

    return fig


def download_link(y_test, y_pred):
    y_pred_df = pd.DataFrame({'Timestamp': y_test.index, 'Predicted_Power': y_pred, 'Actual_Total_Power_(kW)': y_test['PV_Output']})
    csv = y_pred_df.to_csv(index=False)
    b64 = base64.b64encode(csv.encode()).decode()
    href = f'<a href="data:file/csv;base64,{b64}" download="Predicted_Solar_Power.csv">Download Predicted Power CSV File</a>'
    st.sidebar.markdown(href, unsafe_allow_html=True)


def feature_importance_plot(model, feature_names):
    # Get feature importances
    importance = model.feature_importances_
    # Normalize by the sum of all importances
    importance = 100.0 * (importance / importance.sum())
    plt.figure(figsize=(10, 6))
    plt.bar(feature_names, importance)
    plt.title('Feature Importance')
    plt.xlabel('Features')
    plt.ylabel('Importance (%)')
    return plt.gcf()


def download_plot(fig):
    tmpfile = BytesIO()
    fig.savefig(tmpfile, format='png')
    encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')

    href = f'<a href="data:image/png;base64,{encoded}" download="plot.png">Download Result Plot</a>'
    st.sidebar.markdown(href, unsafe_allow_html=True)


def tuned_parameters(model):
    if model == 'lgbm':
        params = {
            'num_leaves': [10, 20, 30, 40, 50],
            'max_depth': [-1, 3, 5, 10],
            'learning_rate': [0.01, 0.05, 0.1],
            'n_estimators': [100, 500, 1000]
        }
        return params

    elif model == 'rf':
        params = {
            'n_estimators': [10, 100, 500, 1000],
            'max_depth': [None, 10, 20, 30, 40, 50],
            'min_samples_split': [2, 5, 10],
            'min_samples_leaf': [1, 2, 4]
        }
        return params

def step3_page():
    st.header("Training the Model")
    st.subheader("Exploring the data")
    st.title("Solar Forecasting App")

    # Display the image and information in a grid layout
    col1 = st.columns([1])

    with col1[0]:
        data = {
            'Timestamp': ['11/1/2022 0:20', '11/1/2022 0:25'],
            'Total_Power (kW)': [37337, 44590],
            'PV_Output': [296.6, 298.4],
            'Solar_Irradiance': [0, 0],
            'Temperature': [25.1, 24.7],
            'Rain_Fall': [42.6, 42.6],
            'Wind_Speed': [0.6, 0.4]
        }
        df = pd.DataFrame(data)
        st.subheader("Example of CSV file DataFrame")
        st.table(df)

    csv_file = st.sidebar.file_uploader("Upload CSV", type=['csv'])

    if csv_file is not None:
        data = process_file(csv_file)

        train_size = st.sidebar.slider("Select Train Dataset Size (%)", min_value=10, max_value=90, value=70)

        models = ['LightGBM', 'Random Forest']
        model_choice = st.sidebar.selectbox('Choose Model', models)

        tune_model = st.sidebar.checkbox('Tune Hyperparameters')

        y_test, y_pred, model = model_predict(data, model_choice, train_size, tune_model)

        # Display feature importance
        if st.sidebar.checkbox('Show feature importance'):
            feature_names = ['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag',
                             'PV_Output_mean']
            fig = feature_importance_plot(model, feature_names)
            with _lock:
                st.pyplot(fig)

        fig = show_output(y_test, y_pred)

        download_link(y_test, y_pred)

        download_plot(fig)

    if st.button("Complete"):
        complete_level(LEVEL)


render_page(step3_page, LEVEL)