Spaces:
Sleeping
Sleeping
File size: 6,482 Bytes
92e31e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import time
from utils.levels import complete_level, render_page, initialize_level
from utils.login import get_login, initialize_login
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import RendererAgg
_lock = RendererAgg.lock
import base64
from io import BytesIO
from PIL import Image, ImageFilter
import lightgbm as lgb
initialize_login()
initialize_level()
LEVEL = 3
File_PATH = 'datasets/Building_forcasting.csv'
def process_file(csv_file):
data = pd.read_csv(csv_file, index_col='Timestamp')
data.index = pd.to_datetime(data.index)
data = data.fillna(0)
return data
def model_predict(data, model_choice, train_size, tune_model):
if model_choice == 'LightGBM':
model = lgb.LGBMRegressor() if not tune_model else lgb.LGBMRegressor(**tuned_parameters('lgbm'))
elif model_choice == 'Random Forest':
model = RandomForestRegressor(n_estimators=100, random_state=42) if not tune_model else RandomForestRegressor(**tuned_parameters('rf'))
X, y = create_model_inputs(data, 288, 288)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size/100, random_state=42, shuffle=False)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
return y_test, y_pred, model
def create_model_inputs(data, lag, mean_period):
df_processed = data.copy()
df_processed['PV_Output_lag'] = df_processed['PV_Output'].shift(lag)
df_processed['PV_Output_mean'] = df_processed['PV_Output'].rolling(window=mean_period).mean()
X = df_processed[['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag', 'PV_Output_mean']].dropna()
y = df_processed[['PV_Output']].loc[X.index]
return X, y
def show_output(y_test, y_pred):
st.sidebar.subheader("Model Performance")
st.sidebar.write(f"Test R2 score: {r2_score(y_test, y_pred):.2f}")
fig, axs = plt.subplots(3, figsize=(12, 18))
axs[0].plot(y_test.index, y_pred/1000, label='Predicted')
axs[0].plot(y_test.index, y_test['PV_Output']/1000, label='Actual')
axs[0].legend()
axs[0].set_title('Prediction vs Actual (Solar Power Generation)')
axs[0].set_xlabel('Date')
axs[0].set_ylabel('Solar Power Generation (kW)')
axs[1].plot(y_test.index, y_pred/1000, label='Predicted')
axs[1].set_title('Predicted Solar Power Generation')
axs[1].set_xlabel('Date')
axs[1].set_ylabel('Solar Power Generation (kW)')
axs[2].plot(y_test.index, y_test['PV_Output']/1000, label='Actual')
axs[2].set_title('Actual Solar Power Generation')
axs[2].set_xlabel('Date')
axs[2].set_ylabel('Solar Power Generation (kW)')
fig.tight_layout()
with _lock:
st.pyplot(fig)
return fig
def download_link(y_test, y_pred):
y_pred_df = pd.DataFrame({'Timestamp': y_test.index, 'Predicted_Power': y_pred, 'Actual_Total_Power_(kW)': y_test['PV_Output']})
csv = y_pred_df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="Predicted_Solar_Power.csv">Download Predicted Power CSV File</a>'
st.sidebar.markdown(href, unsafe_allow_html=True)
def feature_importance_plot(model, feature_names):
# Get feature importances
importance = model.feature_importances_
# Normalize by the sum of all importances
importance = 100.0 * (importance / importance.sum())
plt.figure(figsize=(10, 6))
plt.bar(feature_names, importance)
plt.title('Feature Importance')
plt.xlabel('Features')
plt.ylabel('Importance (%)')
return plt.gcf()
def download_plot(fig):
tmpfile = BytesIO()
fig.savefig(tmpfile, format='png')
encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8')
href = f'<a href="data:image/png;base64,{encoded}" download="plot.png">Download Result Plot</a>'
st.sidebar.markdown(href, unsafe_allow_html=True)
def tuned_parameters(model):
if model == 'lgbm':
params = {
'num_leaves': [10, 20, 30, 40, 50],
'max_depth': [-1, 3, 5, 10],
'learning_rate': [0.01, 0.05, 0.1],
'n_estimators': [100, 500, 1000]
}
return params
elif model == 'rf':
params = {
'n_estimators': [10, 100, 500, 1000],
'max_depth': [None, 10, 20, 30, 40, 50],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
return params
def step3_page():
st.header("Training the Model")
st.subheader("Exploring the data")
st.title("Solar Forecasting App")
# Display the image and information in a grid layout
col1 = st.columns([1])
with col1[0]:
data = {
'Timestamp': ['11/1/2022 0:20', '11/1/2022 0:25'],
'Total_Power (kW)': [37337, 44590],
'PV_Output': [296.6, 298.4],
'Solar_Irradiance': [0, 0],
'Temperature': [25.1, 24.7],
'Rain_Fall': [42.6, 42.6],
'Wind_Speed': [0.6, 0.4]
}
df = pd.DataFrame(data)
st.subheader("Example of CSV file DataFrame")
st.table(df)
csv_file = st.sidebar.file_uploader("Upload CSV", type=['csv'])
if csv_file is not None:
data = process_file(csv_file)
train_size = st.sidebar.slider("Select Train Dataset Size (%)", min_value=10, max_value=90, value=70)
models = ['LightGBM', 'Random Forest']
model_choice = st.sidebar.selectbox('Choose Model', models)
tune_model = st.sidebar.checkbox('Tune Hyperparameters')
y_test, y_pred, model = model_predict(data, model_choice, train_size, tune_model)
# Display feature importance
if st.sidebar.checkbox('Show feature importance'):
feature_names = ['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag',
'PV_Output_mean']
fig = feature_importance_plot(model, feature_names)
with _lock:
st.pyplot(fig)
fig = show_output(y_test, y_pred)
download_link(y_test, y_pred)
download_plot(fig)
if st.button("Complete"):
complete_level(LEVEL)
render_page(step3_page, LEVEL)
|