Shafeek Saleem commited on
Commit
86f0228
·
1 Parent(s): 2e8500a
Files changed (1) hide show
  1. pages/3_Training the Model.py +42 -43
pages/3_Training the Model.py CHANGED
@@ -137,53 +137,52 @@ def tuned_parameters(model):
137
 
138
  def step3_page():
139
  st.header("Training the Model")
140
- st.subheader("Exploring the data")
141
- st.title("Solar Forecasting App")
142
-
143
  # Display the image and information in a grid layout
144
  col1 = st.columns([1])
145
 
146
  with col1[0]:
147
- data = {
148
- 'Timestamp': ['11/1/2022 0:20', '11/1/2022 0:25'],
149
- 'Total_Power (kW)': [37337, 44590],
150
- 'PV_Output': [296.6, 298.4],
151
- 'Solar_Irradiance': [0, 0],
152
- 'Temperature': [25.1, 24.7],
153
- 'Rain_Fall': [42.6, 42.6],
154
- 'Wind_Speed': [0.6, 0.4]
155
- }
156
- df = pd.DataFrame(data)
157
- st.subheader("Example of CSV file DataFrame")
158
- st.table(df)
159
-
160
- csv_file = st.sidebar.file_uploader("Upload CSV", type=['csv'])
161
-
162
- if csv_file is not None:
163
- data = process_file(csv_file)
164
-
165
- train_size = st.sidebar.slider("Select Train Dataset Size (%)", min_value=10, max_value=90, value=70)
166
-
167
- models = ['LightGBM', 'Random Forest']
168
- model_choice = st.sidebar.selectbox('Choose Model', models)
169
-
170
- tune_model = st.sidebar.checkbox('Tune Hyperparameters')
171
-
172
- y_test, y_pred, model = model_predict(data, model_choice, train_size, tune_model)
173
-
174
- # Display feature importance
175
- if st.sidebar.checkbox('Show feature importance'):
176
- feature_names = ['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag',
177
- 'PV_Output_mean']
178
- fig = feature_importance_plot(model, feature_names)
179
- with _lock:
180
- st.pyplot(fig)
181
-
182
- fig = show_output(y_test, y_pred)
183
-
184
- download_link(y_test, y_pred)
185
-
186
- download_plot(fig)
187
 
188
  if st.button("Complete"):
189
  complete_level(LEVEL)
 
137
 
138
  def step3_page():
139
  st.header("Training the Model")
140
+ st.subheader("Data Collection")
141
+ st.info("Upload the dataset which has weather related attributes for model training in .csv format.")
 
142
  # Display the image and information in a grid layout
143
  col1 = st.columns([1])
144
 
145
  with col1[0]:
146
+ # data = {
147
+ # 'Timestamp': ['11/1/2022 0:20', '11/1/2022 0:25'],
148
+ # 'Total_Power (kW)': [37337, 44590],
149
+ # 'PV_Output': [296.6, 298.4],
150
+ # 'Solar_Irradiance': [0, 0],
151
+ # 'Temperature': [25.1, 24.7],
152
+ # 'Rain_Fall': [42.6, 42.6],
153
+ # 'Wind_Speed': [0.6, 0.4]
154
+ # }
155
+ csv_file = st.file_uploader("Upload CSV", type=['csv'])
156
+ if csv_file is not None:
157
+ data = process_file(csv_file)
158
+ df = pd.DataFrame(data)
159
+ st.subheader("Example of CSV file DataFrame")
160
+ st.dataframe(df)
161
+
162
+ train_size = st.sidebar.slider("Select Train Dataset Size (%)", min_value=10, max_value=90, value=70)
163
+
164
+ models = ['LightGBM', 'Random Forest']
165
+ model_choice = st.sidebar.selectbox('Choose Model', models)
166
+
167
+ tune_model = st.sidebar.checkbox('Tune Hyperparameters')
168
+
169
+ y_test, y_pred, model = model_predict(data, model_choice, train_size, tune_model)
170
+
171
+ # Display feature importance
172
+ if st.sidebar.checkbox('Show feature importance'):
173
+ feature_names = ['Solar_Irradiance', 'Temperature', 'Rain_Fall', 'Wind_speed', 'PV_Output_lag',
174
+ 'PV_Output_mean']
175
+ fig = feature_importance_plot(model, feature_names)
176
+ with _lock:
177
+ st.pyplot(fig)
178
+
179
+ fig = show_output(y_test, y_pred)
180
+
181
+ download_link(y_test, y_pred)
182
+
183
+ download_plot(fig)
184
+ else:
185
+ st.error("Please upload a valid .csv file")
186
 
187
  if st.button("Complete"):
188
  complete_level(LEVEL)