Shafeek Saleem commited on
Commit
b14d8eb
·
1 Parent(s): 9fdbc31
Files changed (1) hide show
  1. pages/3_Training the Model.py +6 -3
pages/3_Training the Model.py CHANGED
@@ -54,12 +54,15 @@ def create_model_inputs(data, lag, mean_period, target_variable):
54
  X = df_processed[
55
  ["Location", "MinTemp", "MaxTemp", "Rainfall", "WindGustDir", "WindGustSpeed", "WindDir9am", "WindDir3pm",
56
  "WindSpeed9am", "WindSpeed3pm", "Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Temp9am",
57
- "Temp3pm", "RainToday", target_variable + "_mean"]]
58
  from sklearn.preprocessing import LabelEncoder
59
  label_encoder = LabelEncoder()
60
  X['RainToday'] = label_encoder.fit_transform(X['RainToday'])
61
-
62
- X = pd.get_dummies(X, columns=['Location', 'WindGustDir', 'WindDir9am', 'WindDir3pm'])
 
 
 
63
  y = df_processed[target_variable + "Tomorrow"].loc[X.index]
64
 
65
  return X, y, target_variable + "Tomorrow"
 
54
  X = df_processed[
55
  ["Location", "MinTemp", "MaxTemp", "Rainfall", "WindGustDir", "WindGustSpeed", "WindDir9am", "WindDir3pm",
56
  "WindSpeed9am", "WindSpeed3pm", "Humidity9am", "Humidity3pm", "Pressure9am", "Pressure3pm", "Temp9am",
57
+ "Temp3pm", "RainToday", target_variable + "_mean"]].dropNa()
58
  from sklearn.preprocessing import LabelEncoder
59
  label_encoder = LabelEncoder()
60
  X['RainToday'] = label_encoder.fit_transform(X['RainToday'])
61
+ X['Location'] = label_encoder.fit_transform(X['Location'])
62
+ X['WindGustDir'] = label_encoder.fit_transform(X['WindGustDir'])
63
+ X['WindDir9am'] = label_encoder.fit_transform(X['WindDir9am'])
64
+ X['WindDir3pm'] = label_encoder.fit_transform(X['WindDir3pm'])
65
+ # X = pd.get_dummies(X, columns=['Location', 'WindGustDir', 'WindDir9am', 'WindDir3pm'])
66
  y = df_processed[target_variable + "Tomorrow"].loc[X.index]
67
 
68
  return X, y, target_variable + "Tomorrow"