File size: 9,190 Bytes
fa4f33d
 
 
 
 
4153232
fa4f33d
a5b239b
fa4f33d
 
 
d83ac73
fa4f33d
a5b239b
c230ecc
0456ac3
a5b239b
0456ac3
 
fa4f33d
 
138e54a
fa4f33d
 
 
 
 
 
 
 
670c684
 
 
 
 
 
 
fa4f33d
d83ac73
fa4f33d
 
 
 
c230ecc
fa4f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
670c684
fa4f33d
4153232
 
 
 
 
 
 
fa4f33d
 
 
 
 
d7ede14
fa4f33d
 
 
 
 
 
913daca
fa4f33d
 
4153232
53d7a45
 
 
fa4f33d
 
 
 
 
 
 
3300755
 
 
fa4f33d
 
0af2106
 
fa4f33d
 
 
 
8848584
fa4f33d
 
 
 
 
fca9488
 
 
 
 
625d325
fca9488
 
 
fa4f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b3319
 
 
 
 
 
 
 
 
 
 
 
 
b4cdd87
 
e2b3319
 
b4cdd87
 
e2b3319
 
fa4f33d
 
 
 
 
 
 
 
 
49e7e56
670c684
fa4f33d
 
 
 
 
 
 
 
85963e9
fa4f33d
 
 
 
f8f73b3
 
 
 
 
 
fa4f33d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd317d1
fa4f33d
 
dd317d1
fa4f33d
 
 
 
 
 
 
bbada94
fa4f33d
 
 
 
 
 
 
 
 
5c4c452
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from numpy.random import PCG64DXSM, Generator, SeedSequence
from typing import Tuple, Any
from huggingface_hub import hf_hub_download

dtype: torch.dtype = torch.bfloat16
device: str = "cuda" if torch.cuda.is_available() else "cpu"


pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1.1", torch_dtype=dtype).to(device)
trigger_word = "CNSTLL"

pipe.load_lora_weights(hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"),adapter_name="feifei")
pipe.load_lora_weights("adirik/flux-cinestill")

# Enable VAE tiling
pipe.vae.enable_tiling()


# Define cinematic aspect ratios
ASPECT_RATIOS = {
    "2.39:1 (Modern Widescreen)": 2.39,
    "2.76:1 (Ultra Panavision 70)": 2.76,
    "3.00:1 (Experimental Ultra-wide)": 3.00,
    "4.00:1 (Polyvision)": 4.00,
    "2.55:1 (CinemaScope)": 2.55,
    "2.20:1 (Todd-AO)": 2.20,
    "2.00:1 (Univisium)": 2.00,
    "2.35:1 (Anamorphic Scope)": 2.35,
    "2.59:1 (MGM Camera 65)": 2.59,
    "1.75:1 (IMAX Digital)": 1.75,
    "1.43:1 (IMAX 70mm)": 1.43,
    "2.40:1 (Modern Anamorphic)": 2.40
}
MAX_SEED = np.iinfo(np.int64).max
MIN_WIDTH = 512
MAX_WIDTH = 3072
STANDARD_WIDTH = 2048
STEP_WIDTH = 8
STYLE_PROMPT = "analog film, high resolution, cinestill 800t, hyperrealistic, widescreen, anamorphic, vignette, bokeh, film grain, dramatic lighting, epic composition, moody, detailed, super wide shot, atmospheric, backlit, soft light,  "

def calculate_height(width: int, aspect_ratio: float) -> int:
    height = int(width / aspect_ratio)
    return (height // 8) * 8

# Pre-calculate height mappings for common widths
HEIGHT_CACHE = {}
for ratio_name, ratio in ASPECT_RATIOS.items():
    HEIGHT_CACHE[ratio_name] = {
        width: calculate_height(width, ratio)
        for width in range(MIN_WIDTH, MAX_WIDTH + 1, STEP_WIDTH)
    }

def validate_aspect_ratio(ratio_name: str) -> float | None:
    return ASPECT_RATIOS.get(ratio_name)

# Replace the single rng instance with a function that creates a fresh generator each time
def get_random_seed() -> int:
    # Create a new generator with a random seed each time
    ss = SeedSequence()
    rng = Generator(PCG64DXSM(ss))
    return int(rng.integers(0, MAX_SEED))

@spaces.GPU()
def infer(
    prompt: str,
    aspect_ratio: str,
    width: int,
    seed: Any = 42,  # Change type hint to Any to handle both string and int inputs
    randomize_seed: bool = False,
    num_inference_steps: int = 4,
    progress: Any = gr.Progress(track_tqdm=True)
) -> Tuple[Any, int]:
    # Prepend style prompt to user input
    FULL_PROMPT = f"{STYLE_PROMPT} {prompt}"
    # print(f"Generating image with prompt: {FULL_PROMPT}")
    
    if randomize_seed:
        seed = get_random_seed()
    else:
        # Convert seed to int if it's a string
        seed = int(seed)
    
    ratio = validate_aspect_ratio(aspect_ratio)
    if ratio is None:
        raise ValueError(f"Invalid aspect ratio: {aspect_ratio}")
        
    generator = torch.Generator().manual_seed(seed)
    height = HEIGHT_CACHE[aspect_ratio][width]
    # Calculate megapixel count
    MEGAPIXEL_COUNT = (width * height) / 1000000
    print(f"Generating {MEGAPIXEL_COUNT} megapixel image.")
    
    image = pipe(
        prompt="",
        prompt_2=FULL_PROMPT,  # Use the combined prompt
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=3.5,
        max_sequence_length=256
    ).images[0]
    return image, seed

examples = [
    # Rocket Car
    [
        "NOT PANORAMIC, NOT MIRRORED. a rocket car going across the bonneville salt flats, the image is blurred to show the immense speed.", # prompt
        "4.00:1 (Polyvision)", # aspect_ratio
        3072, # width   
        23, # seed
        False, # randomize_seed
        4, # num_inference_steps
    ],
    # Taxi Driver
    [
        "This gripping frame captures a close-up of a man, his face illuminated by the harsh red glow of city lights, evoking a mood of unease and introspection. His expression is intense and unreadable, with a hint of brooding menace. The dark, blurred background suggests a bustling urban night, with neon lights flickering faintly, emphasizing the gritty, isolating atmosphere. The contrast between the man’s rugged features and the vibrant red lighting highlights the tension and internal conflict likely central to the scene, immersing the viewer in the character’s psychological state.",  # prompt
        "2.39:1 (Modern Widescreen)",  # aspect_ratio
        2048,  # width
        0,  # seed
        False,  # randomize_seed
        4,  # num_inference_steps
    ],
    # Leon The Professional
    [
        "This tightly framed shot focuses on the reflective lenses of round sun glasses, worn by a figure with weathered skin. The reflections in the glasses reveal a table with cups and hands mid-gesture, suggesting an intense, unseen discussion or ritual taking place. The muted tones and soft lighting enhance the intimate and mysterious mood, drawing attention to the details of the reflections. The perspective feels voyeuristic, as if glimpsing a private moment through the character’s point of view. This evocative close-up emphasizes themes of observation, secrecy, and layered meaning within the narrative.",
        "2.76:1 (Ultra Panavision 70)",
        2048,
        1744078352,
        False,
        4,
    ],
    # Lawrence of Arabia
    [
        "three individuals on camels traversing a vast, sunlit desert. The golden sand stretches endlessly in the foreground, interrupted by the striking presence of dark, rugged mountains in the background, bathed in warm sunlight. The composition emphasizes the isolation and majesty of the desert landscape, with the figures casting long shadows that add depth to the scene. The muted blue sky contrasts beautifully with the earthy tones, creating a balanced and immersive visual. The moment conveys a sense of adventure, introspection, and the timeless allure of the natural world.",
        "2.20:1 (Todd-AO)",
        2048,
        0,
        False,
        4,
    ],
]

css="""
body {
    background-image: url('https://huggingface.co/spaces/takarajordan/CineDiffusion/resolve/main/static/background.webp');
    background-size: cover;
    background-position: center;
    background-repeat: no-repeat;
    background-attachment: fixed;
    min-height: 100vh;
}

gradio-app {
    background: none !important;
}

.gradio-container {
    background-color: white;
}

.dark .gradio-container {
    background-color: #121212;
}

#col-container {
    margin: 0 auto;
    max-width: 100%;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# CineDiffusion 🎥 FeiFei
**CineDiffusion** creates cinema-quality widescreen images at up to **4.2 Megapixels** — *4x higher resolution* than typical AI image generators (1MP). Features authentic cinematic aspect ratios for true widescreen results.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                placeholder="Enter your prompt",
                container=True,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(
            label="Result", 
            show_label=False, 
            width="100%",
            type="pil",
            )

        with gr.Row():
            aspect_ratio = gr.Dropdown(
                    label="Aspect Ratio",
                    choices=list(ASPECT_RATIOS.keys()),
                    value="2.39:1 (Modern Widescreen)"
                )
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_WIDTH,
                    maximum=MAX_WIDTH,
                    step=STEP_WIDTH,
                    value=STANDARD_WIDTH,
                )
            
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=6,
                maximum=50,
                step=1,
                value=6,
            )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, aspect_ratio, width, seed, randomize_seed, num_inference_steps],
            outputs=[result, seed],
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, aspect_ratio, width, seed, randomize_seed, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch(ssr_mode = False)