Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,628 Bytes
9857f35 a6fce5e 9857f35 4e9e36c 617166b 9857f35 3c28822 9857f35 3c28822 9f739e2 3c28822 36bb891 3c28822 ae26617 36bb891 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 4a1bc0e 9857f35 8adc8b6 a6fce5e bda227c a6fce5e 9857f35 a6fce5e 9857f35 6236be8 3f7089d 3dedff7 3f7089d fb0fd65 aca0d8c 6c283b9 639405d 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 e7a2234 a6fce5e 9857f35 a6fce5e 9857f35 a0d7fba 9857f35 a6fce5e 27dc4a4 a6fce5e 7c39e00 a6fce5e 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 e3226ac f02151b 9857f35 a6fce5e 9857f35 e3226ac f02151b 9857f35 a6fce5e 9857f35 a6fce5e 9857f35 4ebe6a6 9857f35 a6fce5e f588de8 a6fce5e 9857f35 a6fce5e 9857f35 a6fce5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
from huggingface_hub import hf_hub_download
def feifeimodload():
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"aifeifei798/DarkIdol-flux-v1.1", torch_dtype=dtype
).to(device)
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.unload_lora_weights()
torch.cuda.empty_cache()
return pipe
pipe = feifeimodload()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
#prompt = f"{prompt}, Master of Light and Shadow."
image = pipe(
prompt = "",
prompt_2 = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=3.5
).images[0]
return image, seed
examples = [
"flux, kpop girls, sunrise",
"flux",
"If life could always be as fresh as the first encounter.",
"DarkIdol flux",
"a sexy girl,poses,look at camera,Slim figure, gigantic breasts,poses,natural,High-quality photography, creative composition, fashion foresight, a strong visual style, and an aura of luxury and sophistication collectively define the distinctive aesthetic of Vogue magazine.",
"real model slight smile girl in real life",
"real model smile girl in real life",
"real model girl in real life",
"A high-resolution photograph of a Japanese female model in a serene, natural setting, with soft, warm lighting, and a minimalist aesthetic, showcasing a elegant fragrance bottle and the model's effortless, emotive expression, with impeccable styling, and a muted color palette, evoking a sense of understated luxury and refinement."
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# DarkIdol-flux
DarkIdol-flux is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 6-8 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=12,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False,height=520)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=896,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1152,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch() |