import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline, AutoencoderTiny dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("aifeifei798/taef1", torch_dtype=dtype).to( device ) pipe = DiffusionPipeline.from_pretrained( "aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype, vae=taef1 ).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# DarkIdol flux DarkIdol flux is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 4-8 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=12, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1088, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1920, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples=False ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()