File size: 4,661 Bytes
e7c8845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
const express = require('express')
const bodyParser = require('body-parser')
const axios = require('axios')
const app = express()
const uuid = require('uuid')
const { uploadImage } = require('./image')

app.use(bodyParser.json())
// 设置上传文件大小限制
app.use(bodyParser.json({ limit: '50mb' }))
app.use(bodyParser.urlencoded({ limit: '50mb', extended: true }))

app.get('/v1/models', async (req, res) => {
  try {
    const response = await axios.get('https://chat.qwenlm.ai/api/models',
      {
        headers: {
          "Authorization": req.headers.authorization,
          "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
        }
      })
    res.json(response.data)
  } catch (error) {
    res.status(403)
      .json({
        error: "请提供正确的 Authorization token"
      })
  }
})

app.post('/v1/chat/completions', async (req, res) => {
  if (!req.headers.authorization) {
    return res.status(403)
      .json({
        error: "请提供正确的 Authorization token"
      })
  }
  const messages = req.body.messages
  let imageId = null
  const isImageMessage = Array.isArray(messages[messages.length - 1].content) === true && messages[messages.length - 1].content[1].image_url.url
  if (isImageMessage) {
    imageId = await uploadImage(messages[messages.length - 1].content[1].image_url.url, req.headers.authorization)
    messages[messages.length - 1].content[1] = {
      "type": "image",
      "image": imageId
    }
  }

  const stream = req.body.stream

  const notStreamResponse = async (response) => {
    const bodyTemplate = {
      "id": `chatcmpl-${uuid.v4()}`,
      "object": "chat.completion",
      "created": new Date().getTime(),
      "model": req.body.model,
      "choices": [
        {
          "index": 0,
          "message": {
            "role": "assistant",
            "content": response.choices[0].message.content
          },
          "finish_reason": "stop"
        }
      ],
      "usage": {
        "prompt_tokens": JSON.stringify(req.body.messages).length,
        "completion_tokens": response.choices[0].message.content.length,
        "total_tokens": JSON.stringify(req.body.messages).length + response.choices[0].message.content.length
      }
    }
    res.json(bodyTemplate)
  }

  const streamResponse = async (response) => {
    const id = uuid.v4()
    const decoder = new TextDecoder('utf-8')
    let backContent = null
    response.on('data', (chunk) => {
      const decodeText = decoder.decode(chunk)

      const lists = decodeText.split('\n').filter(item => item.trim() !== '')
      for (const item of lists) {
        const decodeJson = JSON.parse(item.replace(/^data: /, ''))
        let content = decodeJson.choices[0].delta.content

        if (backContent === null) {
          backContent = content
        } else {
          const temp = content
          content = content.replace(backContent, '')
          backContent = temp
        }

        const StreamTemplate = {
          "id": `chatcmpl-${id}`,
          "object": "chat.completion.chunk",
          "created": new Date().getTime(),
          "choices": [
            {
              "index": 0,
              "delta": {
                "content": content
              },
              "finish_reason": null
            }
          ]
        }
        res.write(`data: ${JSON.stringify(StreamTemplate)}\n\n`)
      }
    })

    response.on('end', () => {
      res.write(`data: [DONE]\n\n`)
      res.end()
    })

  }

  try {
    const response = await axios.post('https://chat.qwenlm.ai/api/chat/completions',
      req.body,
      {
        headers: {
          "Authorization": req.headers.authorization,
          "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
        },
        responseType: stream ? 'stream' : 'json'
      }
    )
    if (stream) {
      res.set({
        'Content-Type': 'text/event-stream',
        'Cache-Control': 'no-cache',
        'Connection': 'keep-alive',
      })
      streamResponse(response.data)
    } else {
      res.set({
        'Content-Type': 'application/json',
      })
      notStreamResponse(response.data)
    }

  } catch (error) {
    console.log(error)
    res.status(500)
      .json({
        error: "罢工了,不干了!!!"
      })
  }

})

app.listen(3000, () => {
  console.log('Server is running on port 3000')
})