Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
from langchain_community.document_loaders import TextLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
import numpy as np | |
import faiss | |
from collections import deque | |
from langchain_core.embeddings import Embeddings | |
import threading | |
import queue | |
from langchain_core.messages import HumanMessage, AIMessage | |
from sentence_transformers import SentenceTransformer | |
import pickle | |
import torch | |
from langchain_core.documents import Document | |
import time | |
from tqdm import tqdm | |
# 获取环境变量 | |
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "") | |
if not os.environ["OPENROUTER_API_KEY"]: | |
raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加") | |
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY") | |
if not SILICONFLOW_API_KEY: | |
raise ValueError("SILICONFLOW_API_KEY 未设置,请在 Hugging Face Spaces 的 Settings > Secrets 中添加 SILICONFLOW_API_KEY") | |
# SiliconFlow API 配置 | |
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 需根据实际文档确认 | |
# 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3,启用 GPU 和混合精度) | |
class SentenceTransformerEmbeddings(Embeddings): | |
def __init__(self, model_name="BAAI/bge-m3"): | |
self.model = SentenceTransformer(model_name, device="cuda" if torch.cuda.is_available() else "cpu") | |
self.batch_size = 64 | |
self.query_cache = {} | |
def embed_documents(self, texts): | |
total_chunks = len(texts) | |
embeddings_list = [] | |
batch_size = 1000 | |
print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)") | |
start_time = time.time() | |
with torch.no_grad(): | |
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"): | |
batch_start = i | |
batch_end = min(i + batch_size, total_chunks) | |
batch_texts = [text.page_content for text in texts[batch_start:batch_end]] | |
batch_start_time = time.time() | |
with torch.cuda.amp.autocast(): | |
batch_emb = self.model.encode( | |
batch_texts, | |
normalize_embeddings=True, | |
batch_size=self.batch_size, | |
show_progress_bar=True | |
) | |
batch_time = time.time() - batch_start_time | |
if isinstance(batch_emb, torch.Tensor): | |
embeddings_list.append(batch_emb.cpu().numpy()) | |
else: | |
embeddings_list.append(batch_emb) | |
print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒") | |
embeddings_array = np.vstack(embeddings_list) | |
total_time = time.time() - start_time | |
print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒") | |
np.save("embeddings.npy", embeddings_array) | |
return embeddings_array | |
def embed_query(self, text): | |
if text in self.query_cache: | |
return self.query_cache[text] | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0] | |
self.query_cache[text] = emb | |
return emb | |
# 重排序函数,使用 SiliconFlow API 调用 BAAI/bge-reranker-v2-m3 | |
def rerank_documents(query, documents, top_n=15): | |
try: | |
if not documents or not query: | |
raise ValueError("查询或文档列表为空") | |
# 提取文档内容和元数据,限制长度为 2048 字符 | |
doc_texts = [(doc.page_content[:2048].replace("\n", " ").strip(), doc.metadata.get("book", "未知来源")) for doc in documents[:50]] | |
print(f"Query: {query[:100]}... (长度: {len(query)})") | |
print(f"文档数量 (前50个): {len(doc_texts)}") | |
for i, (doc, book) in enumerate(doc_texts[:5]): # 仅打印前5个用于调试 | |
print(f" Doc {i}: {doc[:100]}... (来源: {book})") | |
# 构造 SiliconFlow API 请求 | |
headers = { | |
"Authorization": f"Bearer {SILICONFLOW_API_KEY}", | |
"Content-Type": "application/json" | |
} | |
payload = { | |
"model": "BAAI/bge-reranker-v2-m3", | |
"query": query, | |
"documents": [text for text, _ in doc_texts], | |
"top_n": top_n | |
} | |
start_time = time.time() | |
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload) | |
response.raise_for_status() # 检查请求是否成功 | |
rerank_time = time.time() - start_time | |
print(f"重排序耗时: {rerank_time:.2f} 秒") | |
# 解析 SiliconFlow API 响应 | |
result = response.json() | |
print(f"SiliconFlow API 响应: {result}") | |
# 验证返回结果 | |
if "results" not in result or not isinstance(result["results"], list): | |
raise ValueError(f"SiliconFlow API 返回格式错误: {result}") | |
# 构建重排序结果,修正键名为 "relevance_score" | |
reranked_docs = [] | |
for res in result["results"]: | |
if "index" not in res or "relevance_score" not in res: | |
raise ValueError(f"SiliconFlow API 返回的条目格式错误: {res}") | |
index = res["index"] | |
score = res["relevance_score"] | |
if index < len(documents): | |
text, book = doc_texts[index] | |
reranked_docs.append((Document(page_content=text, metadata={"book": book}), score)) | |
# 按得分排序并截取 top_n | |
reranked_docs = sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n] | |
print(f"重排序结果 (数量: {len(reranked_docs)}):") | |
for i, (doc, score) in enumerate(reranked_docs): | |
print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})") | |
return reranked_docs | |
except Exception as e: | |
error_msg = str(e) | |
print(f"错误详情: {error_msg}") | |
raise Exception(f"重排序失败: {error_msg}") | |
# 构建 HNSW 索引 | |
def build_hnsw_index(knowledge_base_path, index_path): | |
print("开始加载文档...") | |
start_time = time.time() | |
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False) | |
documents = loader.load() | |
load_time = time.time() - start_time | |
print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
if not os.path.exists("chunks.pkl"): | |
print("开始分片...") | |
start_time = time.time() | |
texts = [] | |
total_chars = 0 | |
total_bytes = 0 | |
for i, doc in enumerate(documents): | |
doc_chunks = text_splitter.split_documents([doc]) | |
for chunk in doc_chunks: | |
content = chunk.page_content | |
file_path = chunk.metadata.get("source", "") | |
book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·") | |
texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"})) | |
total_chars += len(content) | |
total_bytes += len(content.encode('utf-8')) | |
if i < 5: | |
print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}") | |
if (i + 1) % 10 == 0: | |
print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}") | |
with open("chunks.pkl", "wb") as f: | |
pickle.dump(texts, f) | |
split_time = time.time() - start_time | |
print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒") | |
else: | |
with open("chunks.pkl", "rb") as f: | |
texts = pickle.load(f) | |
print(f"加载已有分片,共 {len(texts)} 个 chunk") | |
if not os.path.exists("embeddings.npy"): | |
print("开始生成嵌入(使用 BAAI/bge-m3,GPU 加速,分批处理)...") | |
embeddings_array = embeddings.embed_documents(texts) | |
if os.path.exists("embeddings_temp.npy"): | |
os.remove("embeddings_temp.npy") | |
print(f"嵌入生成完成,维度: {embeddings_array.shape}") | |
else: | |
embeddings_array = np.load("embeddings.npy") | |
print(f"加载已有嵌入,维度: {embeddings_array.shape}") | |
dimension = embeddings_array.shape[1] | |
index = faiss.IndexHNSWFlat(dimension, 16) | |
index.hnsw.efConstruction = 100 | |
print("开始构建 HNSW 索引...") | |
batch_size = 5000 | |
total_vectors = embeddings_array.shape[0] | |
for i in range(0, total_vectors, batch_size): | |
batch = embeddings_array[i:i + batch_size] | |
index.add(batch) | |
print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}") | |
text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)] | |
vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True) | |
vector_store.index = index | |
vector_store.docstore._dict.clear() | |
vector_store.index_to_docstore_id.clear() | |
for i, text in enumerate(texts): | |
doc_id = str(i) | |
vector_store.docstore._dict[doc_id] = text | |
vector_store.index_to_docstore_id[i] = doc_id | |
print("开始保存索引...") | |
vector_store.save_local(index_path) | |
print(f"HNSW 索引已生成并保存到 '{index_path}'") | |
return vector_store, texts | |
# 初始化嵌入模型 | |
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3") | |
print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(GPU 模式)") | |
# 加载或生成索引 | |
index_path = "faiss_index_hnsw_new" | |
knowledge_base_path = "knowledge_base" | |
if not os.path.exists(index_path): | |
if os.path.exists(knowledge_base_path): | |
print("检测到 knowledge_base,正在生成 HNSW 索引...") | |
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path) | |
else: | |
raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据") | |
else: | |
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) | |
vector_store.index.hnsw.efSearch = 300 | |
print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300") | |
with open("chunks.pkl", "rb") as f: | |
all_documents = pickle.load(f) | |
book_counts = {} | |
for doc in all_documents: | |
book = doc.metadata.get("book", "未知来源") | |
book_counts[book] = book_counts.get(book, 0) + 1 | |
print(f"all_documents 书籍分布: {book_counts}") | |
# 初始化 ChatOpenAI | |
llm = ChatOpenAI( | |
model="deepseek/deepseek-r1:free", | |
api_key=os.environ["OPENROUTER_API_KEY"], | |
base_url="https://openrouter.ai/api/v1", | |
timeout=60, | |
temperature=0.3, | |
max_tokens=130000, | |
streaming=True | |
) | |
# 定义提示词模板 | |
prompt_template = PromptTemplate( | |
input_variables=["context", "question", "chat_history"], | |
template=""" | |
你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。 | |
在回答时,请注意以下几点: | |
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。 | |
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。 | |
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为: | |
- 引用文献: | |
1. [文本 1] 摘要... 出自:书名,第X页/章节。 | |
2. [文本 2] 摘要... 出自:书名,第X页/章节。 | |
(依此类推,至少10篇) | |
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 | |
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 | |
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 | |
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。 | |
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。 | |
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。 | |
- 根据对话历史调整回答,避免重复或矛盾。 | |
- 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。 | |
- 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。 | |
- 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。 | |
- 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。 | |
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 | |
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 | |
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 | |
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 | |
""" | |
) | |
# 对话历史管理类 | |
class ConversationHistory: | |
def __init__(self, max_length=10): | |
self.history = deque(maxlen=max_length) | |
def add_turn(self, question, answer): | |
self.history.append((question, answer)) | |
def get_history(self): | |
return [(turn[0], turn[1]) for turn in self.history] | |
def clear(self): | |
self.history.clear() | |
# 用户会话状态类 | |
class UserSession: | |
def __init__(self): | |
self.conversation = ConversationHistory() | |
self.output_queue = queue.Queue() | |
self.stop_flag = threading.Event() | |
# 生成回答的线程函数 | |
def generate_answer_thread(question, session): | |
stop_flag = session.stop_flag | |
output_queue = session.output_queue | |
conversation = session.conversation | |
stop_flag.clear() | |
try: | |
history_list = conversation.get_history() | |
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else "" | |
query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question | |
# 1. 使用 BAAI/bge-m3 生成查询嵌入 | |
start_time = time.time() | |
query_embedding = embeddings.embed_query(query_with_context) | |
embed_time = time.time() - start_time | |
output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n") | |
if stop_flag.is_set(): | |
output_queue.put("生成已停止") | |
return | |
# 2. 使用 FAISS HNSW 索引进行初始检索 | |
start_time = time.time() | |
initial_docs_with_scores = vector_store.similarity_search_with_score(query_with_context, k=50) | |
search_time = time.time() - start_time | |
output_queue.put(f"初始检索数量: {len(initial_docs_with_scores)}\n检索耗时: {search_time:.2f} 秒\n") | |
if stop_flag.is_set(): | |
output_queue.put("生成已停止") | |
return | |
initial_docs = [doc for doc, _ in initial_docs_with_scores] | |
# 3. 使用 SiliconFlow 的 BAAI/bge-reranker-v2-m3 进行重排序 | |
start_time = time.time() | |
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs, top_n=15) | |
rerank_time = time.time() - start_time | |
output_queue.put(f"重排序耗时 (BAAI/bge-reranker-v2-m3): {rerank_time:.2f} 秒\n") | |
if stop_flag.is_set(): | |
output_queue.put("生成已停止") | |
return | |
# 调整 final_docs 数量,取前 10 篇 | |
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10] | |
if len(final_docs) < 10: | |
output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求") | |
# 构造 context,包含文本内容和书目信息 | |
context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)]) | |
chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a) | |
for i, (q, a) in enumerate(history_list)] | |
prompt = prompt_template.format(context=context, question=question, chat_history=history_text) | |
# 4. 使用 LLM 生成回答 | |
answer = "" | |
start_time = time.time() | |
for chunk in llm.stream([HumanMessage(content=prompt)]): | |
if stop_flag.is_set(): | |
output_queue.put(answer + "\n\n(生成已停止)") | |
return | |
answer += chunk.content | |
output_queue.put(answer) | |
llm_time = time.time() - start_time | |
output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒") | |
conversation.add_turn(question, answer) | |
output_queue.put(answer) | |
except Exception as e: | |
output_queue.put(f"Error: {str(e)}") | |
# Gradio 接口函数 | |
def answer_question(question, session_state): | |
if session_state is None: | |
session_state = UserSession() | |
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state)) | |
thread.start() | |
while thread.is_alive() or not session_state.output_queue.empty(): | |
try: | |
output = session_state.output_queue.get(timeout=0.1) | |
yield output, session_state | |
except queue.Empty: | |
continue | |
while not session_state.output_queue.empty(): | |
yield session_state.output_queue.get(), session_state | |
def stop_generation(session_state): | |
if session_state is not None: | |
session_state.stop_flag.set() | |
return "生成已停止,正在中止..." | |
def clear_conversation(): | |
return "对话历史已清空,请开始新的对话。", UserSession() | |
# 创建 Gradio 界面 | |
with gr.Blocks(title="AI李敖助手") as interface: | |
gr.Markdown("### AI李敖助手") | |
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。") | |
session_state = gr.State(value=None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...") | |
submit_button = gr.Button("提交") | |
with gr.Column(scale=1): | |
clear_button = gr.Button("新建对话") | |
stop_button = gr.Button("停止生成") | |
output_text = gr.Textbox(label="回答", interactive=False) | |
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state]) | |
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state]) | |
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text) | |
# 启动应用 | |
if __name__ == "__main__": | |
interface.launch(share=True) |