aileeao / app_backup.py
aihuashanying's picture
Upload 2 files
fd12765
import os
import gradio as gr
import requests
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
import numpy as np
import faiss
from collections import deque
from langchain_core.embeddings import Embeddings
import threading
import queue
from langchain_core.messages import HumanMessage, AIMessage
from sentence_transformers import SentenceTransformer
import pickle
import torch
from langchain_core.documents import Document
import time
from tqdm import tqdm
# 获取环境变量
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
if not os.environ["OPENROUTER_API_KEY"]:
raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
if not SILICONFLOW_API_KEY:
raise ValueError("SILICONFLOW_API_KEY 未设置,请在 Hugging Face Spaces 的 Settings > Secrets 中添加 SILICONFLOW_API_KEY")
# SiliconFlow API 配置
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 需根据实际文档确认
# 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3,启用 GPU 和混合精度)
class SentenceTransformerEmbeddings(Embeddings):
def __init__(self, model_name="BAAI/bge-m3"):
self.model = SentenceTransformer(model_name, device="cuda" if torch.cuda.is_available() else "cpu")
self.batch_size = 64
self.query_cache = {}
def embed_documents(self, texts):
total_chunks = len(texts)
embeddings_list = []
batch_size = 1000
print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)")
start_time = time.time()
with torch.no_grad():
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"):
batch_start = i
batch_end = min(i + batch_size, total_chunks)
batch_texts = [text.page_content for text in texts[batch_start:batch_end]]
batch_start_time = time.time()
with torch.cuda.amp.autocast():
batch_emb = self.model.encode(
batch_texts,
normalize_embeddings=True,
batch_size=self.batch_size,
show_progress_bar=True
)
batch_time = time.time() - batch_start_time
if isinstance(batch_emb, torch.Tensor):
embeddings_list.append(batch_emb.cpu().numpy())
else:
embeddings_list.append(batch_emb)
print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒")
embeddings_array = np.vstack(embeddings_list)
total_time = time.time() - start_time
print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒")
np.save("embeddings.npy", embeddings_array)
return embeddings_array
def embed_query(self, text):
if text in self.query_cache:
return self.query_cache[text]
with torch.no_grad():
with torch.cuda.amp.autocast():
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0]
self.query_cache[text] = emb
return emb
# 重排序函数,使用 SiliconFlow API 调用 BAAI/bge-reranker-v2-m3
def rerank_documents(query, documents, top_n=15):
try:
if not documents or not query:
raise ValueError("查询或文档列表为空")
# 提取文档内容和元数据,限制长度为 2048 字符
doc_texts = [(doc.page_content[:2048].replace("\n", " ").strip(), doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
print(f"Query: {query[:100]}... (长度: {len(query)})")
print(f"文档数量 (前50个): {len(doc_texts)}")
for i, (doc, book) in enumerate(doc_texts[:5]): # 仅打印前5个用于调试
print(f" Doc {i}: {doc[:100]}... (来源: {book})")
# 构造 SiliconFlow API 请求
headers = {
"Authorization": f"Bearer {SILICONFLOW_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "BAAI/bge-reranker-v2-m3",
"query": query,
"documents": [text for text, _ in doc_texts],
"top_n": top_n
}
start_time = time.time()
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
response.raise_for_status() # 检查请求是否成功
rerank_time = time.time() - start_time
print(f"重排序耗时: {rerank_time:.2f} 秒")
# 解析 SiliconFlow API 响应
result = response.json()
print(f"SiliconFlow API 响应: {result}")
# 验证返回结果
if "results" not in result or not isinstance(result["results"], list):
raise ValueError(f"SiliconFlow API 返回格式错误: {result}")
# 构建重排序结果,修正键名为 "relevance_score"
reranked_docs = []
for res in result["results"]:
if "index" not in res or "relevance_score" not in res:
raise ValueError(f"SiliconFlow API 返回的条目格式错误: {res}")
index = res["index"]
score = res["relevance_score"]
if index < len(documents):
text, book = doc_texts[index]
reranked_docs.append((Document(page_content=text, metadata={"book": book}), score))
# 按得分排序并截取 top_n
reranked_docs = sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
print(f"重排序结果 (数量: {len(reranked_docs)}):")
for i, (doc, score) in enumerate(reranked_docs):
print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
return reranked_docs
except Exception as e:
error_msg = str(e)
print(f"错误详情: {error_msg}")
raise Exception(f"重排序失败: {error_msg}")
# 构建 HNSW 索引
def build_hnsw_index(knowledge_base_path, index_path):
print("开始加载文档...")
start_time = time.time()
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
documents = loader.load()
load_time = time.time() - start_time
print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
if not os.path.exists("chunks.pkl"):
print("开始分片...")
start_time = time.time()
texts = []
total_chars = 0
total_bytes = 0
for i, doc in enumerate(documents):
doc_chunks = text_splitter.split_documents([doc])
for chunk in doc_chunks:
content = chunk.page_content
file_path = chunk.metadata.get("source", "")
book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
total_chars += len(content)
total_bytes += len(content.encode('utf-8'))
if i < 5:
print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
if (i + 1) % 10 == 0:
print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
with open("chunks.pkl", "wb") as f:
pickle.dump(texts, f)
split_time = time.time() - start_time
print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
else:
with open("chunks.pkl", "rb") as f:
texts = pickle.load(f)
print(f"加载已有分片,共 {len(texts)} 个 chunk")
if not os.path.exists("embeddings.npy"):
print("开始生成嵌入(使用 BAAI/bge-m3,GPU 加速,分批处理)...")
embeddings_array = embeddings.embed_documents(texts)
if os.path.exists("embeddings_temp.npy"):
os.remove("embeddings_temp.npy")
print(f"嵌入生成完成,维度: {embeddings_array.shape}")
else:
embeddings_array = np.load("embeddings.npy")
print(f"加载已有嵌入,维度: {embeddings_array.shape}")
dimension = embeddings_array.shape[1]
index = faiss.IndexHNSWFlat(dimension, 16)
index.hnsw.efConstruction = 100
print("开始构建 HNSW 索引...")
batch_size = 5000
total_vectors = embeddings_array.shape[0]
for i in range(0, total_vectors, batch_size):
batch = embeddings_array[i:i + batch_size]
index.add(batch)
print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
vector_store.index = index
vector_store.docstore._dict.clear()
vector_store.index_to_docstore_id.clear()
for i, text in enumerate(texts):
doc_id = str(i)
vector_store.docstore._dict[doc_id] = text
vector_store.index_to_docstore_id[i] = doc_id
print("开始保存索引...")
vector_store.save_local(index_path)
print(f"HNSW 索引已生成并保存到 '{index_path}'")
return vector_store, texts
# 初始化嵌入模型
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(GPU 模式)")
# 加载或生成索引
index_path = "faiss_index_hnsw_new"
knowledge_base_path = "knowledge_base"
if not os.path.exists(index_path):
if os.path.exists(knowledge_base_path):
print("检测到 knowledge_base,正在生成 HNSW 索引...")
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
else:
raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
else:
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
vector_store.index.hnsw.efSearch = 300
print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
with open("chunks.pkl", "rb") as f:
all_documents = pickle.load(f)
book_counts = {}
for doc in all_documents:
book = doc.metadata.get("book", "未知来源")
book_counts[book] = book_counts.get(book, 0) + 1
print(f"all_documents 书籍分布: {book_counts}")
# 初始化 ChatOpenAI
llm = ChatOpenAI(
model="deepseek/deepseek-r1:free",
api_key=os.environ["OPENROUTER_API_KEY"],
base_url="https://openrouter.ai/api/v1",
timeout=60,
temperature=0.3,
max_tokens=130000,
streaming=True
)
# 定义提示词模板
prompt_template = PromptTemplate(
input_variables=["context", "question", "chat_history"],
template="""
你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
在回答时,请注意以下几点:
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
- 引用文献:
1. [文本 1] 摘要... 出自:书名,第X页/章节。
2. [文本 2] 摘要... 出自:书名,第X页/章节。
(依此类推,至少10篇)
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
- 根据对话历史调整回答,避免重复或矛盾。
- 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
- 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
- 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
- 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
"""
)
# 对话历史管理类
class ConversationHistory:
def __init__(self, max_length=10):
self.history = deque(maxlen=max_length)
def add_turn(self, question, answer):
self.history.append((question, answer))
def get_history(self):
return [(turn[0], turn[1]) for turn in self.history]
def clear(self):
self.history.clear()
# 用户会话状态类
class UserSession:
def __init__(self):
self.conversation = ConversationHistory()
self.output_queue = queue.Queue()
self.stop_flag = threading.Event()
# 生成回答的线程函数
def generate_answer_thread(question, session):
stop_flag = session.stop_flag
output_queue = session.output_queue
conversation = session.conversation
stop_flag.clear()
try:
history_list = conversation.get_history()
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
# 1. 使用 BAAI/bge-m3 生成查询嵌入
start_time = time.time()
query_embedding = embeddings.embed_query(query_with_context)
embed_time = time.time() - start_time
output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n")
if stop_flag.is_set():
output_queue.put("生成已停止")
return
# 2. 使用 FAISS HNSW 索引进行初始检索
start_time = time.time()
initial_docs_with_scores = vector_store.similarity_search_with_score(query_with_context, k=50)
search_time = time.time() - start_time
output_queue.put(f"初始检索数量: {len(initial_docs_with_scores)}\n检索耗时: {search_time:.2f} 秒\n")
if stop_flag.is_set():
output_queue.put("生成已停止")
return
initial_docs = [doc for doc, _ in initial_docs_with_scores]
# 3. 使用 SiliconFlow 的 BAAI/bge-reranker-v2-m3 进行重排序
start_time = time.time()
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs, top_n=15)
rerank_time = time.time() - start_time
output_queue.put(f"重排序耗时 (BAAI/bge-reranker-v2-m3): {rerank_time:.2f} 秒\n")
if stop_flag.is_set():
output_queue.put("生成已停止")
return
# 调整 final_docs 数量,取前 10 篇
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
if len(final_docs) < 10:
output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
# 构造 context,包含文本内容和书目信息
context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
for i, (q, a) in enumerate(history_list)]
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
# 4. 使用 LLM 生成回答
answer = ""
start_time = time.time()
for chunk in llm.stream([HumanMessage(content=prompt)]):
if stop_flag.is_set():
output_queue.put(answer + "\n\n(生成已停止)")
return
answer += chunk.content
output_queue.put(answer)
llm_time = time.time() - start_time
output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
conversation.add_turn(question, answer)
output_queue.put(answer)
except Exception as e:
output_queue.put(f"Error: {str(e)}")
# Gradio 接口函数
def answer_question(question, session_state):
if session_state is None:
session_state = UserSession()
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
thread.start()
while thread.is_alive() or not session_state.output_queue.empty():
try:
output = session_state.output_queue.get(timeout=0.1)
yield output, session_state
except queue.Empty:
continue
while not session_state.output_queue.empty():
yield session_state.output_queue.get(), session_state
def stop_generation(session_state):
if session_state is not None:
session_state.stop_flag.set()
return "生成已停止,正在中止..."
def clear_conversation():
return "对话历史已清空,请开始新的对话。", UserSession()
# 创建 Gradio 界面
with gr.Blocks(title="AI李敖助手") as interface:
gr.Markdown("### AI李敖助手")
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
session_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
submit_button = gr.Button("提交")
with gr.Column(scale=1):
clear_button = gr.Button("新建对话")
stop_button = gr.Button("停止生成")
output_text = gr.Textbox(label="回答", interactive=False)
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
# 启动应用
if __name__ == "__main__":
interface.launch(share=True)