Spaces:
Running
Running
<<<<<<< HEAD | |
import torch | |
print(torch.__version__) # 如 2.4.0+cu118 | |
print(torch.cuda.is_available()) # 应返回 True | |
print(torch.cuda.get_device_name(0)) # 应返回 GPU 型号 | |
======= | |
import os | |
import gradio as gr | |
from langchain_community.document_loaders import TextLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.chains import RetrievalQA | |
from langchain_core.embeddings import Embeddings | |
from langchain.prompts import PromptTemplate | |
import requests | |
import numpy as np | |
import json | |
import faiss | |
from langchain_community.embeddings import OllamaEmbeddings | |
# 自定义 SiliconFlow 嵌入类 | |
class SiliconFlowEmbeddings(Embeddings): | |
def __init__(self, model="BAAI/bge-m3", api_key=None): | |
self.model = model | |
self.api_key = api_key | |
def embed_documents(self, texts): | |
return self._get_embeddings(texts) | |
def embed_query(self, text): | |
return self._get_embeddings([text])[0] | |
def _get_embeddings(self, texts): | |
url = "https://api.siliconflow.cn/v1/embeddings" | |
headers = { | |
"Authorization": f"Bearer {self.api_key}", | |
"Content-Type": "application/json" | |
} | |
payload = { | |
"model": self.model, | |
"input": texts | |
} | |
response = requests.post(url, json=payload, headers=headers, timeout=30) | |
if response.status_code == 200: | |
data = response.json() | |
return np.array([item["embedding"] for item in data["data"]]) | |
else: | |
raise Exception(f"API 调用失败: {response.status_code}, {response.text}") | |
# SiliconFlow 重排序函数 | |
def rerank_documents(query, documents, api_key, top_n=10): | |
url = "https://api.siliconflow.cn/v1/rerank" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
doc_texts = [doc.page_content for doc in documents] | |
payload = { | |
"model": "BAAI/bge-reranker-v2-m3", | |
"query": query, | |
"documents": doc_texts, | |
"top_n": top_n | |
} | |
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=30) | |
if response.status_code == 200: | |
result = response.json() | |
reranked_results = result.get("results", []) | |
if not reranked_results: | |
raise Exception("重排序结果为空") | |
reranked_docs_with_scores = [ | |
(documents[res["index"]], res["relevance_score"]) | |
for res in reranked_results | |
] | |
return reranked_docs_with_scores | |
else: | |
raise Exception(f"重排序失败: {response.status_code}, {response.text}") | |
# 设置 API Keys | |
os.environ["SILICONFLOW_API_KEY"] = os.getenv("SILICONFLOW_API_KEY", "sk-cigytzyzghoziznvniugfihuicjcgmborusgodktydremtvd") | |
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "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") | |
# 初始化嵌入模型 | |
embeddings = OllamaEmbeddings(model="bge-m3", base_url="http://localhost:11434") | |
# 从 knowledge_base 生成 HNSW 索引 | |
def build_hnsw_index(knowledge_base_path, index_path): | |
loader = DirectoryLoader( | |
knowledge_base_path, | |
glob="*.txt", | |
loader_cls=lambda path: TextLoader(path, encoding="utf-8") | |
) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
texts = text_splitter.split_documents(documents) | |
# 使用 FAISS.from_documents 创建向量存储 | |
vector_store = FAISS.from_documents(texts, embeddings) | |
# 获取嵌入并转换为 HNSW | |
embeddings_array = np.array(embeddings.embed_documents([doc.page_content for doc in texts])) | |
dimension = embeddings_array.shape[1] | |
index = faiss.IndexHNSWFlat(dimension, 16) # M=16 | |
index.hnsw.efConstruction = 100 | |
index.hnsw.efSearch = 50 | |
index.add(embeddings_array) | |
# 更新 FAISS 的索引 | |
vector_store.index = index | |
vector_store.save_local(index_path) | |
print(f"HNSW 索引已生成并保存到 '{index_path}'") | |
return vector_store | |
# 将已有 faiss_index 转为 HNSW | |
def convert_to_hnsw(existing_index_path, new_index_path): | |
# 加载现有索引 | |
old_vector_store = FAISS.load_local(existing_index_path, embeddings=embeddings, allow_dangerous_deserialization=True) | |
# 获取文档内容 | |
if hasattr(old_vector_store, 'docstore') and hasattr(old_vector_store.docstore, '_dict'): | |
docs = list(old_vector_store.docstore._dict.values()) | |
doc_texts = [doc.page_content if hasattr(doc, 'page_content') else str(doc) for doc in docs] | |
else: | |
doc_ids = list(old_vector_store.index_to_docstore_id.keys()) | |
doc_texts = [old_vector_store.docstore._dict[old_vector_store.index_to_docstore_id[i]].page_content | |
if hasattr(old_vector_store.docstore._dict[old_vector_store.index_to_docstore_id[i]], 'page_content') | |
else str(old_vector_store.docstore._dict[old_vector_store.index_to_docstore_id[i]]) | |
for i in doc_ids] | |
# 使用全局 embeddings 对象生成嵌入 | |
embeddings_array = np.array(embeddings.embed_documents(doc_texts)) | |
# 创建 HNSW 索引 | |
dimension = embeddings_array.shape[1] | |
index = faiss.IndexHNSWFlat(dimension, 16) # M=16 | |
index.hnsw.efConstruction = 100 | |
index.hnsw.efSearch = 50 | |
index.add(embeddings_array) | |
# 创建新的 FAISS 向量存储,注意不直接传递 index,而是稍后赋值 | |
new_vector_store = FAISS.from_texts(doc_texts, embeddings) | |
new_vector_store.index = index # 直接替换索引 | |
new_vector_store.save_local(new_index_path) | |
print(f"已将 '{existing_index_path}' 转换为 HNSW 并保存到 '{new_index_path}'") | |
return new_vector_store | |
# 加载或生成索引 | |
index_path = "faiss_index_hnsw" | |
knowledge_base_path = "knowledge_base" | |
if not os.path.exists(index_path): | |
if os.path.exists("faiss_index"): | |
print("检测到已有 faiss_index,正在转换为 HNSW...") | |
vector_store = convert_to_hnsw("faiss_index", index_path) | |
elif os.path.exists(knowledge_base_path): | |
print("检测到 knowledge_base,正在生成 HNSW 索引...") | |
vector_store = build_hnsw_index(knowledge_base_path, index_path) | |
else: | |
raise FileNotFoundError("未找到 'faiss_index' 或 'knowledge_base',请提供知识库数据") | |
else: | |
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) | |
print("已加载 HNSW 索引 'faiss_index_hnsw'") | |
# 初始化 ChatOpenAI 使用 OpenRouter | |
llm = ChatOpenAI( | |
model="deepseek/deepseek-r1:free", | |
api_key=os.environ["OPENROUTER_API_KEY"], | |
base_url="https://openrouter.ai/api/v1", | |
timeout=60, | |
temperature=0.3, | |
max_tokens=88888, | |
) | |
# 定义提示词模板 | |
prompt_template = PromptTemplate( | |
input_variables=["context", "question"], | |
template=""" | |
你是一个研究李敖的专家,根据用户提出的问题{question}以及从李敖相关书籍和评论中检索的内容{context}回答问题。 | |
在回答时,请注意以下几点: | |
- 结合李敖的写作风格和思想,筛选出与问题最相关的检索内容,避免无关信息。 | |
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 | |
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 | |
- 如果检索内容不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 | |
- 列出引用的书籍或文章名称及章节(如有),如《李敖大全集》第X卷或具体书名。 | |
- 只能基于提供的知识库内容{context}回答,不得引入外部信息。 | |
- 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。 | |
- 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。 | |
- 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在5个点以内,并合并相关的内容。 | |
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 | |
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 | |
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 | |
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 | |
""" | |
) | |
# 创建检索问答链 | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=vector_store.as_retriever(search_kwargs={"k": 30}), | |
return_source_documents=True, | |
chain_type_kwargs={"prompt": prompt_template} | |
) | |
# 定义 Gradio 接口函数 | |
def answer_question(question): | |
try: | |
# Step 1: FAISS 初始检索 | |
initial_docs_with_scores = vector_store.similarity_search_with_score(question, k=30) | |
print(f"初始检索数量: {len(initial_docs_with_scores)}") | |
# FAISS 返回的是距离,转换为相似度 | |
similarities = [1 - score for _, score in initial_docs_with_scores] | |
print(f"相似度范围: {min(similarities):.4f} - {max(similarities):.4f}") | |
# 打印前 5 个文档内容和相似度 | |
for i, (doc, score) in enumerate(initial_docs_with_scores[:5]): | |
print(f"Top {i+1} - 相似度: {1 - score:.4f}, 内容: {doc.page_content[:100]}") | |
# Step 2: 动态阈值过滤 | |
similarity_threshold = max(similarities) * 0.8 | |
filtered_docs_with_scores = [ | |
(doc, 1 - score) | |
for doc, score in initial_docs_with_scores | |
if (1 - score) >= similarity_threshold | |
] | |
if len(filtered_docs_with_scores) < 5: | |
filtered_docs_with_scores = initial_docs_with_scores[:10] | |
print(f"过滤后数量不足,保留前 10 个文档") | |
else: | |
print(f"过滤后数量: {len(filtered_docs_with_scores)}") | |
initial_docs = [doc for doc, _ in filtered_docs_with_scores] | |
vector_similarities = [sim for _, sim in filtered_docs_with_scores] | |
# Step 3: 重排序 | |
reranked_docs_with_scores = rerank_documents(question, initial_docs, os.environ["SILICONFLOW_API_KEY"], top_n=10) | |
reranked_docs = [doc for doc, score in reranked_docs_with_scores] | |
rerank_scores = [score for _, score in reranked_docs_with_scores] | |
# Step 4: 融合得分并排序 | |
combined_scores = [ | |
0.2 * vector_similarities[i] + 0.8 * rerank_scores[i] | |
for i in range(len(reranked_docs)) | |
] | |
sorted_docs_with_scores = sorted( | |
zip(reranked_docs, combined_scores), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
final_docs = [doc for doc, _ in sorted_docs_with_scores][:5] | |
# Step 5: 生成回答 | |
context = "\n\n".join([doc.page_content for doc in final_docs]) | |
response = qa_chain.invoke({"query": question, "context": context}) | |
return response["result"] | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# 创建 Gradio 界面 | |
interface = gr.Interface( | |
fn=answer_question, | |
inputs=gr.Textbox(label="请输入您的问题"), | |
outputs=gr.Textbox(label="回答"), | |
title="AI李敖助手", | |
description="基于李敖163本相关书籍构建的知识库,输入问题以获取李敖风格的回答。" | |
) | |
# 启动应用 | |
if __name__ == "__main__": | |
interface.launch(share=True) | |
>>>>>>> 921dc7e73a28368974490d7eba946303cf2129ba | |