aihuashanying commited on
Commit
1802287
·
1 Parent(s): 6778b8c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -426
app.py DELETED
@@ -1,426 +0,0 @@
1
- import os
2
- import gradio as gr
3
- from langchain_community.document_loaders import TextLoader, DirectoryLoader
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain_community.vectorstores import FAISS
6
- from langchain_openai import ChatOpenAI
7
- from langchain.prompts import PromptTemplate
8
- import numpy as np
9
- import faiss
10
- from collections import deque
11
- from langchain_core.embeddings import Embeddings
12
- import threading
13
- import queue
14
- from langchain_core.messages import HumanMessage, AIMessage
15
- from sentence_transformers import SentenceTransformer
16
- import pickle
17
- import torch
18
- from langchain_core.documents import Document
19
- import time
20
- from tqdm import tqdm
21
- from rank_bm25 import BM25Okapi # 新增 BM25 库
22
-
23
- # 获取 OPENROUTER_API_KEY 环境变量
24
- os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
25
- if not os.environ["OPENROUTER_API_KEY"]:
26
- raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
27
-
28
- # 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3 模型,适配 CPU)
29
- class SentenceTransformerEmbeddings(Embeddings):
30
- def __init__(self, model_name="BAAI/bge-m3"):
31
- self.model = SentenceTransformer(model_name, device="cpu")
32
- self.batch_size = 64
33
- self.query_cache = {}
34
-
35
- def embed_documents(self, texts):
36
- total_chunks = len(texts)
37
- embeddings_list = []
38
- batch_size = 1000
39
-
40
- print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)")
41
- start_time = time.time()
42
- with torch.no_grad():
43
- for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"):
44
- batch_start = i
45
- batch_end = min(i + batch_size, total_chunks)
46
- batch_texts = [text.page_content for text in texts[batch_start:batch_end]]
47
-
48
- batch_start_time = time.time()
49
- batch_emb = self.model.encode(
50
- batch_texts,
51
- normalize_embeddings=True,
52
- batch_size=self.batch_size,
53
- show_progress_bar=True
54
- )
55
- batch_time = time.time() - batch_start_time
56
-
57
- if isinstance(batch_emb, torch.Tensor):
58
- embeddings_list.append(batch_emb.cpu().numpy())
59
- else:
60
- embeddings_list.append(batch_emb)
61
- print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒")
62
-
63
- embeddings_array = np.vstack(embeddings_list)
64
- total_time = time.time() - start_time
65
- print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒")
66
-
67
- np.save("embeddings.npy", embeddings_array)
68
- return embeddings_array
69
-
70
- def embed_query(self, text):
71
- if text in self.query_cache:
72
- return self.query_cache[text]
73
- with torch.no_grad():
74
- emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0]
75
- self.query_cache[text] = emb
76
- return emb
77
-
78
- # 按权重混合检索函数(优化性能和得分)
79
- def hybrid_retrieval(query, vector_store, documents, top_n=15, bm25_weight=0.4, semantic_weight=0.6):
80
- try:
81
- if not documents or not query:
82
- raise ValueError("查询或文档列表为空")
83
-
84
- # 创建文档到 ID 的映射
85
- doc_to_id = {id(doc): str(i) for i, doc in enumerate(documents)}
86
- id_to_doc = {str(i): doc for i, doc in enumerate(documents)}
87
-
88
- # 语义搜索(FAISS,优化 efSearch)
89
- vector_store.index.hnsw.efSearch = 50 # 降低搜索复杂度
90
- query_embedding = vector_store.embedding_function.embed_query(query)
91
- D, I = vector_store.index.search(np.array([query_embedding]), min(top_n * 2, len(documents)))
92
- semantic_results = []
93
- for idx, dist in zip(I[0], D[0]):
94
- if idx == -1:
95
- continue
96
- doc_id = vector_store.index_to_docstore_id.get(idx)
97
- if doc_id is None:
98
- continue
99
- doc = vector_store.docstore.search(doc_id)
100
- if doc:
101
- # 归一化距离为相似度(0到1,1为最相似)
102
- max_dist = np.max(D) if np.max(D) > 0 else 1.0
103
- similarity = 1.0 - (dist / max_dist if max_dist > 0 else 0.0)
104
- semantic_results.append((doc, similarity))
105
-
106
- # 使用 doc_id 存储语义得分
107
- semantic_scores = {}
108
- for doc, score in semantic_results:
109
- doc_id = doc_to_id.get(id(doc))
110
- if doc_id is not None:
111
- semantic_scores[doc_id] = score
112
-
113
- # 关键字搜索(BM25,优化批处理)
114
- tokenized_corpus = [doc.page_content.split() for doc in documents]
115
- bm25 = BM25Okapi(tokenized_corpus)
116
- tokenized_query = query.split()
117
- bm25_scores = bm25.get_scores(tokenized_query)
118
-
119
- # 归一化 BM25 得分
120
- max_bm25 = max(bm25_scores) if bm25_scores.size > 0 else 1.0
121
- normalized_bm25_scores = bm25_scores / max_bm25 if max_bm25 > 0 else bm25_scores
122
-
123
- # 合并得分
124
- combined_scores = {}
125
- for i, doc in enumerate(documents):
126
- doc_id = str(i)
127
- semantic_score = semantic_scores.get(doc_id, 0.0)
128
- bm25_score = normalized_bm25_scores[i] if i < len(normalized_bm25_scores) else 0.0
129
- combined_score = (bm25_weight * bm25_score) + (semantic_weight * semantic_score)
130
- combined_scores[doc_id] = combined_score
131
-
132
- # 按组合得分排序
133
- ranked_ids = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
134
- ranked_docs = [(id_to_doc[doc_id], score) for doc_id, score in ranked_ids]
135
-
136
- print(f"Query: {query[:100]}... (长度: {len(query)})")
137
- print(f"混合检索结果 (数量: {len(ranked_docs)}):")
138
- for i, (doc, score) in enumerate(ranked_docs):
139
- print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
140
-
141
- return ranked_docs
142
-
143
- except Exception as e:
144
- error_msg = str(e)
145
- print(f"错误详情: {error_msg}")
146
- raise Exception(f"混合检索失败: {error_msg}")
147
-
148
- # 构建 HNSW 索引
149
- def build_hnsw_index(knowledge_base_path, index_path):
150
- print("开始加载文档...")
151
- start_time = time.time()
152
- loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
153
- documents = loader.load()
154
- load_time = time.time() - start_time
155
- print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
156
-
157
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
158
- if not os.path.exists("chunks.pkl"):
159
- print("开始分片...")
160
- start_time = time.time()
161
- texts = []
162
- total_chars = 0
163
- total_bytes = 0
164
- for i, doc in enumerate(documents):
165
- doc_chunks = text_splitter.split_documents([doc])
166
- for chunk in doc_chunks:
167
- content = chunk.page_content
168
- file_path = chunk.metadata.get("source", "")
169
- book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
170
- texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
171
- total_chars += len(content)
172
- total_bytes += len(content.encode('utf-8'))
173
- if i < 5:
174
- print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
175
- if (i + 1) % 10 == 0:
176
- print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
177
- with open("chunks.pkl", "wb") as f:
178
- pickle.dump(texts, f)
179
- split_time = time.time() - start_time
180
- print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
181
- else:
182
- with open("chunks.pkl", "rb") as f:
183
- texts = pickle.load(f)
184
- print(f"加载已有分片,共 {len(texts)} 个 chunk")
185
-
186
- if not os.path.exists("embeddings.npy"):
187
- print("开始生成嵌入(使用 BAAI/bge-m3,CPU 模式,分批处理)...")
188
- embeddings_array = embeddings.embed_documents(texts)
189
- if os.path.exists("embeddings_temp.npy"):
190
- os.remove("embeddings_temp.npy")
191
- print(f"嵌入生成完成,维度: {embeddings_array.shape}")
192
- else:
193
- embeddings_array = np.load("embeddings.npy")
194
- print(f"加载已有嵌入,维度: {embeddings_array.shape}")
195
-
196
- dimension = embeddings_array.shape[1]
197
- index = faiss.IndexHNSWFlat(dimension, 16)
198
- index.hnsw.efConstruction = 100
199
- print("开始构建 HNSW 索引...")
200
-
201
- batch_size = 5000
202
- total_vectors = embeddings_array.shape[0]
203
- for i in range(0, total_vectors, batch_size):
204
- batch = embeddings_array[i:i + batch_size]
205
- index.add(batch)
206
- print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
207
-
208
- text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
209
- vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
210
- vector_store.index = index
211
- vector_store.docstore._dict.clear()
212
- vector_store.index_to_docstore_id.clear()
213
-
214
- for i, text in enumerate(texts):
215
- doc_id = str(i)
216
- vector_store.docstore._dict[doc_id] = text
217
- vector_store.index_to_docstore_id[i] = doc_id
218
-
219
- print("开始保存索引...")
220
- vector_store.save_local(index_path)
221
- print(f"HNSW 索引已生成并保存到 '{index_path}'")
222
- return vector_store, texts # 返回 vector_store 和分片文本
223
-
224
- # 初始化嵌入模型
225
- embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
226
- print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(CPU 模式)")
227
-
228
- # 加载或生成索引
229
- index_path = "faiss_index_hnsw_new"
230
- knowledge_base_path = "knowledge_base"
231
-
232
- if not os.path.exists(index_path):
233
- if os.path.exists(knowledge_base_path):
234
- print("检测到 knowledge_base,正在生成 HNSW 索引...")
235
- vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
236
- else:
237
- raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
238
- else:
239
- vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
240
- vector_store.index.hnsw.efSearch = 50 # 初始设置为50,可根据需要调整
241
- print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 50")
242
- with open("chunks.pkl", "rb") as f:
243
- all_documents = pickle.load(f)
244
- print(f"加载已有分片,共 {len(all_documents)} 个 chunk")
245
-
246
- # 初始化 ChatOpenAI
247
- llm = ChatOpenAI(
248
- model="deepseek/deepseek-r1:free",
249
- api_key=os.environ["OPENROUTER_API_KEY"],
250
- base_url="https://openrouter.ai/api/v1",
251
- timeout=60,
252
- temperature=0.3,
253
- max_tokens=130000,
254
- streaming=True
255
- )
256
-
257
- # 定义提示词模板
258
- prompt_template = PromptTemplate(
259
- input_variables=["context", "question", "chat_history"],
260
- template="""
261
- 你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
262
- 在回答时,请注意以下几点:
263
- - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
264
- - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
265
- - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
266
- - 引用文献:
267
- 1. [文本 1] 摘要... 出自:书名,第X页/章节。
268
- 2. [文本 2] 摘要... 出自:书名,第X页/章节。
269
- (依此类推,至少10篇)
270
- - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
271
- - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
272
- - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
273
- - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
274
- - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
275
- - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
276
- - 根据对话历史调整回答,避免重复或矛盾。
277
- - 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
278
- - 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
279
- - 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
280
- - 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。
281
- - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
282
- - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
283
- - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
284
- - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
285
- """
286
- )
287
-
288
- # 对话历史管理类
289
- class ConversationHistory:
290
- def __init__(self, max_length=10):
291
- self.history = deque(maxlen=max_length)
292
-
293
- def add_turn(self, question, answer):
294
- self.history.append((question, answer))
295
-
296
- def get_history(self):
297
- return [(turn[0], turn[1]) for turn in self.history]
298
-
299
- def clear(self):
300
- self.history.clear()
301
-
302
- # 用户会话状态类
303
- class UserSession:
304
- def __init__(self):
305
- self.conversation = ConversationHistory()
306
- self.output_queue = queue.Queue()
307
- self.stop_flag = threading.Event()
308
-
309
- # 生成回答的线程函数
310
- def generate_answer_thread(question, session):
311
- stop_flag = session.stop_flag
312
- output_queue = session.output_queue
313
- conversation = session.conversation
314
-
315
- stop_flag.clear()
316
- try:
317
- history_list = conversation.get_history()
318
- history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
319
- query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
320
-
321
- # 1. 使用 BAAI/bge-m3 生成查询嵌入
322
- start_time = time.time()
323
- query_embedding = embeddings.embed_query(query_with_context)
324
- embed_time = time.time() - start_time
325
- output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n")
326
-
327
- if stop_flag.is_set():
328
- output_queue.put("生成已停止")
329
- return
330
-
331
- # 2. 使用混合检索(BM25 + FAISS)
332
- start_time = time.time()
333
- retrieved_docs_with_scores = hybrid_retrieval(
334
- query_with_context,
335
- vector_store,
336
- all_documents,
337
- top_n=15,
338
- bm25_weight=0.4,
339
- semantic_weight=0.6
340
- )
341
- retrieval_time = time.time() - start_time
342
- output_queue.put(f"混合检索耗时: {retrieval_time:.2f} 秒\n")
343
-
344
- if stop_flag.is_set():
345
- output_queue.put("生成已停止")
346
- return
347
-
348
- # 调整 final_docs 数量,取前 10 篇
349
- final_docs = [doc for doc, _ in retrieved_docs_with_scores][:10]
350
- if len(final_docs) < 10:
351
- output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
352
-
353
- # 构造 context,包含文本内容和书目信息
354
- context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
355
- chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
356
- for i, (q, a) in enumerate(history_list)]
357
- prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
358
-
359
- # 3. 使用 LLM 生成回答
360
- answer = ""
361
- start_time = time.time()
362
- for chunk in llm.stream([HumanMessage(content=prompt)]):
363
- if stop_flag.is_set():
364
- output_queue.put(answer + "\n\n(生成已停止)")
365
- return
366
- answer += chunk.content
367
- output_queue.put(answer)
368
- llm_time = time.time() - start_time
369
- output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
370
-
371
- conversation.add_turn(question, answer)
372
- output_queue.put(answer)
373
-
374
- except Exception as e:
375
- output_queue.put(f"Error: {str(e)}")
376
-
377
- # Gradio 接口函数
378
- def answer_question(question, session_state):
379
- if session_state is None:
380
- session_state = UserSession()
381
-
382
- thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
383
- thread.start()
384
-
385
- while thread.is_alive() or not session_state.output_queue.empty():
386
- try:
387
- output = session_state.output_queue.get(timeout=0.1)
388
- yield output, session_state
389
- except queue.Empty:
390
- continue
391
-
392
- while not session_state.output_queue.empty():
393
- yield session_state.output_queue.get(), session_state
394
-
395
- def stop_generation(session_state):
396
- if session_state is not None:
397
- session_state.stop_flag.set()
398
- return "生成已停止,正在中止..."
399
-
400
- def clear_conversation():
401
- return "对话历史已清空,请开始新的对话。", UserSession()
402
-
403
- # 创建 Gradio 界面
404
- with gr.Blocks(title="AI李敖助手") as interface:
405
- gr.Markdown("### AI李敖助手")
406
- gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
407
-
408
- session_state = gr.State(value=None)
409
-
410
- with gr.Row():
411
- with gr.Column(scale=3):
412
- question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
413
- submit_button = gr.Button("提交")
414
- with gr.Column(scale=1):
415
- clear_button = gr.Button("新建对话")
416
- stop_button = gr.Button("停止生成")
417
-
418
- output_text = gr.Textbox(label="回答", interactive=False)
419
-
420
- submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
421
- clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
422
- stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
423
-
424
- # 启动应用
425
- if __name__ == "__main__":
426
- interface.launch(share=True)