Spaces:
Running
Running
Commit
·
1a893e2
1
Parent(s):
6c3a484
Delete app.py
Browse files
app.py
DELETED
@@ -1,433 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.vectorstores import FAISS
|
6 |
-
from langchain_openai import ChatOpenAI
|
7 |
-
from langchain.prompts import PromptTemplate
|
8 |
-
import numpy as np
|
9 |
-
import faiss
|
10 |
-
from collections import deque
|
11 |
-
from langchain_core.embeddings import Embeddings
|
12 |
-
import threading
|
13 |
-
import queue
|
14 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
15 |
-
from sentence_transformers import SentenceTransformer
|
16 |
-
import pickle
|
17 |
-
import torch
|
18 |
-
from langchain_core.documents import Document
|
19 |
-
import time
|
20 |
-
from tqdm import tqdm
|
21 |
-
from rank_bm25 import BM25Okapi # 新增 BM25 库
|
22 |
-
|
23 |
-
# 获取 OPENROUTER_API_KEY 环境变量
|
24 |
-
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
|
25 |
-
if not os.environ["OPENROUTER_API_KEY"]:
|
26 |
-
raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
|
27 |
-
|
28 |
-
# 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3 模型,适配 CPU)
|
29 |
-
class SentenceTransformerEmbeddings(Embeddings):
|
30 |
-
def __init__(self, model_name="BAAI/bge-m3"):
|
31 |
-
self.model = SentenceTransformer(model_name, device="cpu")
|
32 |
-
self.batch_size = 64
|
33 |
-
self.query_cache = {}
|
34 |
-
|
35 |
-
def embed_documents(self, texts):
|
36 |
-
total_chunks = len(texts)
|
37 |
-
embeddings_list = []
|
38 |
-
batch_size = 1000
|
39 |
-
|
40 |
-
print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)")
|
41 |
-
start_time = time.time()
|
42 |
-
with torch.no_grad():
|
43 |
-
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"):
|
44 |
-
batch_start = i
|
45 |
-
batch_end = min(i + batch_size, total_chunks)
|
46 |
-
batch_texts = [text.page_content for text in texts[batch_start:batch_end]]
|
47 |
-
|
48 |
-
batch_start_time = time.time()
|
49 |
-
batch_emb = self.model.encode(
|
50 |
-
batch_texts,
|
51 |
-
normalize_embeddings=True,
|
52 |
-
batch_size=self.batch_size,
|
53 |
-
show_progress_bar=True
|
54 |
-
)
|
55 |
-
batch_time = time.time() - batch_start_time
|
56 |
-
|
57 |
-
if isinstance(batch_emb, torch.Tensor):
|
58 |
-
embeddings_list.append(batch_emb.cpu().numpy())
|
59 |
-
else:
|
60 |
-
embeddings_list.append(batch_emb)
|
61 |
-
print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒")
|
62 |
-
|
63 |
-
embeddings_array = np.vstack(embeddings_list)
|
64 |
-
total_time = time.time() - start_time
|
65 |
-
print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒")
|
66 |
-
|
67 |
-
np.save("embeddings.npy", embeddings_array)
|
68 |
-
return embeddings_array
|
69 |
-
|
70 |
-
def embed_query(self, text):
|
71 |
-
if text in self.query_cache:
|
72 |
-
return self.query_cache[text]
|
73 |
-
with torch.no_grad():
|
74 |
-
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0]
|
75 |
-
self.query_cache[text] = emb
|
76 |
-
return emb
|
77 |
-
|
78 |
-
# 按权重混合检索函数(优化得分和多样性)
|
79 |
-
def hybrid_retrieval(query, vector_store, documents, top_n=15, bm25_weight=0.4, semantic_weight=0.6):
|
80 |
-
try:
|
81 |
-
if not documents or not query:
|
82 |
-
raise ValueError("查询或文档列表为空")
|
83 |
-
|
84 |
-
# 创建文档到 ID 的映射
|
85 |
-
doc_to_id = {id(doc): str(i) for i, doc in enumerate(documents)}
|
86 |
-
id_to_doc = {str(i): doc for i, doc in enumerate(documents)}
|
87 |
-
|
88 |
-
# 语义搜索(FAISS,恢复 efSearch 为 300)
|
89 |
-
vector_store.index.hnsw.efSearch = 300 # 增加搜索范围
|
90 |
-
query_embedding = vector_store.embedding_function.embed_query(query)
|
91 |
-
D, I = vector_store.index.search(np.array([query_embedding]), min(top_n * 2, len(documents)))
|
92 |
-
print(f"FAISS 搜索结果 - 距离 (D): {D[0][:5]}... (前5个)")
|
93 |
-
print(f"FAISS 搜索结果 - 索引 (I): {I[0][:5]}... (前5个)")
|
94 |
-
semantic_results = []
|
95 |
-
if D.size > 0 and np.max(D) > 0:
|
96 |
-
for idx, dist in zip(I[0], D[0]):
|
97 |
-
if idx == -1:
|
98 |
-
continue
|
99 |
-
doc_id = vector_store.index_to_docstore_id.get(idx)
|
100 |
-
if doc_id is None:
|
101 |
-
continue
|
102 |
-
doc = vector_store.docstore.search(doc_id)
|
103 |
-
if doc:
|
104 |
-
# 归一化距离为相似度(0到1,1为最相似)
|
105 |
-
similarity = 1.0 - (dist / np.max(D) if np.max(D) > 0 else 0.0)
|
106 |
-
semantic_results.append((doc, similarity))
|
107 |
-
else:
|
108 |
-
print("警告:FAISS 距离数组为空或全为0,可能索引异常")
|
109 |
-
|
110 |
-
# 使用 doc_id 存储语义得分
|
111 |
-
semantic_scores = {}
|
112 |
-
for doc, score in semantic_results:
|
113 |
-
doc_id = doc_to_id.get(id(doc))
|
114 |
-
if doc_id is not None:
|
115 |
-
semantic_scores[doc_id] = score
|
116 |
-
print(f"语义得分 (semantic_scores): {dict(list(semantic_scores.items())[:5])}... (前5个)")
|
117 |
-
|
118 |
-
# 关键字搜索(BM25)
|
119 |
-
tokenized_corpus = [doc.page_content.split() for doc in documents]
|
120 |
-
bm25 = BM25Okapi(tokenized_corpus)
|
121 |
-
tokenized_query = query.split()
|
122 |
-
bm25_scores = bm25.get_scores(tokenized_query)
|
123 |
-
print(f"BM25 得分 (bm25_scores): {bm25_scores[:5]}... (前5个)")
|
124 |
-
|
125 |
-
# 归一化 BM25 得分
|
126 |
-
max_bm25 = max(bm25_scores) if bm25_scores.size > 0 and max(bm25_scores) > 0 else 1.0
|
127 |
-
normalized_bm25_scores = bm25_scores / max_bm25 if max_bm25 > 0 else bm25_scores
|
128 |
-
print(f"归一化 BM25 得分 (normalized_bm25_scores): {normalized_bm25_scores[:5]}... (前5个)")
|
129 |
-
|
130 |
-
# 合并得分
|
131 |
-
combined_scores = {}
|
132 |
-
for i, doc in enumerate(documents):
|
133 |
-
doc_id = str(i)
|
134 |
-
semantic_score = semantic_scores.get(doc_id, 0.0)
|
135 |
-
bm25_score = normalized_bm25_scores[i] if i < len(normalized_bm25_scores) else 0.0
|
136 |
-
combined_score = (bm25_weight * bm25_score) + (semantic_weight * semantic_score)
|
137 |
-
combined_scores[doc_id] = combined_score
|
138 |
-
|
139 |
-
# 按组合得分排序
|
140 |
-
ranked_ids = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
|
141 |
-
ranked_docs = [(id_to_doc[doc_id], score) for doc_id, score in ranked_ids]
|
142 |
-
|
143 |
-
print(f"Query: {query[:100]}... (长度: {len(query)})")
|
144 |
-
print(f"混合检索结果 (数量: {len(ranked_docs)}):")
|
145 |
-
for i, (doc, score) in enumerate(ranked_docs):
|
146 |
-
print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
|
147 |
-
|
148 |
-
return ranked_docs
|
149 |
-
|
150 |
-
except Exception as e:
|
151 |
-
error_msg = str(e)
|
152 |
-
print(f"错误详情: {error_msg}")
|
153 |
-
raise Exception(f"混合检索失败: {error_msg}")
|
154 |
-
|
155 |
-
# 构建 HNSW 索引
|
156 |
-
def build_hnsw_index(knowledge_base_path, index_path):
|
157 |
-
print("开始加载文档...")
|
158 |
-
start_time = time.time()
|
159 |
-
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
|
160 |
-
documents = loader.load()
|
161 |
-
load_time = time.time() - start_time
|
162 |
-
print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
|
163 |
-
|
164 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
165 |
-
if not os.path.exists("chunks.pkl"):
|
166 |
-
print("开始分片...")
|
167 |
-
start_time = time.time()
|
168 |
-
texts = []
|
169 |
-
total_chars = 0
|
170 |
-
total_bytes = 0
|
171 |
-
for i, doc in enumerate(documents):
|
172 |
-
doc_chunks = text_splitter.split_documents([doc])
|
173 |
-
for chunk in doc_chunks:
|
174 |
-
content = chunk.page_content
|
175 |
-
file_path = chunk.metadata.get("source", "")
|
176 |
-
book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
|
177 |
-
texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
|
178 |
-
total_chars += len(content)
|
179 |
-
total_bytes += len(content.encode('utf-8'))
|
180 |
-
if i < 5:
|
181 |
-
print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
|
182 |
-
if (i + 1) % 10 == 0:
|
183 |
-
print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
|
184 |
-
with open("chunks.pkl", "wb") as f:
|
185 |
-
pickle.dump(texts, f)
|
186 |
-
split_time = time.time() - start_time
|
187 |
-
print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
|
188 |
-
else:
|
189 |
-
with open("chunks.pkl", "rb") as f:
|
190 |
-
texts = pickle.load(f)
|
191 |
-
print(f"加载已有分片,共 {len(texts)} 个 chunk")
|
192 |
-
|
193 |
-
if not os.path.exists("embeddings.npy"):
|
194 |
-
print("开始生成嵌入(使用 BAAI/bge-m3,CPU 模式,分批处理)...")
|
195 |
-
embeddings_array = embeddings.embed_documents(texts)
|
196 |
-
if os.path.exists("embeddings_temp.npy"):
|
197 |
-
os.remove("embeddings_temp.npy")
|
198 |
-
print(f"嵌入生成完成,维度: {embeddings_array.shape}")
|
199 |
-
else:
|
200 |
-
embeddings_array = np.load("embeddings.npy")
|
201 |
-
print(f"加载已有嵌入,维度: {embeddings_array.shape}")
|
202 |
-
|
203 |
-
dimension = embeddings_array.shape[1]
|
204 |
-
index = faiss.IndexHNSWFlat(dimension, 16)
|
205 |
-
index.hnsw.efConstruction = 100
|
206 |
-
print("开始构建 HNSW 索引...")
|
207 |
-
|
208 |
-
batch_size = 5000
|
209 |
-
total_vectors = embeddings_array.shape[0]
|
210 |
-
for i in range(0, total_vectors, batch_size):
|
211 |
-
batch = embeddings_array[i:i + batch_size]
|
212 |
-
index.add(batch)
|
213 |
-
print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
|
214 |
-
|
215 |
-
text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
|
216 |
-
vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
|
217 |
-
vector_store.index = index
|
218 |
-
vector_store.docstore._dict.clear()
|
219 |
-
vector_store.index_to_docstore_id.clear()
|
220 |
-
|
221 |
-
for i, text in enumerate(texts):
|
222 |
-
doc_id = str(i)
|
223 |
-
vector_store.docstore._dict[doc_id] = text
|
224 |
-
vector_store.index_to_docstore_id[i] = doc_id
|
225 |
-
|
226 |
-
print("开始保存索引...")
|
227 |
-
vector_store.save_local(index_path)
|
228 |
-
print(f"HNSW 索引已生成并保存到 '{index_path}'")
|
229 |
-
return vector_store, texts # 返回 vector_store 和分片文本
|
230 |
-
|
231 |
-
# 初始化嵌入模型
|
232 |
-
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
|
233 |
-
print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(CPU 模式)")
|
234 |
-
|
235 |
-
# 加载或生成索引
|
236 |
-
index_path = "faiss_index_hnsw_new"
|
237 |
-
knowledge_base_path = "knowledge_base"
|
238 |
-
|
239 |
-
if not os.path.exists(index_path):
|
240 |
-
if os.path.exists(knowledge_base_path):
|
241 |
-
print("检测到 knowledge_base,正在生成 HNSW 索引...")
|
242 |
-
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
|
243 |
-
else:
|
244 |
-
raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
|
245 |
-
else:
|
246 |
-
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
|
247 |
-
vector_store.index.hnsw.efSearch = 300 # 初始设置为300,可根据需要调整
|
248 |
-
print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
|
249 |
-
with open("chunks.pkl", "rb") as f:
|
250 |
-
all_documents = pickle.load(f)
|
251 |
-
print(f"加载已有分片,共 {len(all_documents)} 个 chunk")
|
252 |
-
|
253 |
-
# 初始化 ChatOpenAI
|
254 |
-
llm = ChatOpenAI(
|
255 |
-
model="deepseek/deepseek-r1:free",
|
256 |
-
api_key=os.environ["OPENROUTER_API_KEY"],
|
257 |
-
base_url="https://openrouter.ai/api/v1",
|
258 |
-
timeout=60,
|
259 |
-
temperature=0.3,
|
260 |
-
max_tokens=130000,
|
261 |
-
streaming=True
|
262 |
-
)
|
263 |
-
|
264 |
-
# 定义提示词模板
|
265 |
-
prompt_template = PromptTemplate(
|
266 |
-
input_variables=["context", "question", "chat_history"],
|
267 |
-
template="""
|
268 |
-
你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
|
269 |
-
在回答时,请注意以下几点:
|
270 |
-
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
|
271 |
-
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
|
272 |
-
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
|
273 |
-
- 引用文献:
|
274 |
-
1. [文本 1] 摘要... 出自:书名,第X页/章节。
|
275 |
-
2. [文本 2] 摘要... 出自:书名,第X页/章节。
|
276 |
-
(依此类推,至少10篇)
|
277 |
-
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
|
278 |
-
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
|
279 |
-
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
|
280 |
-
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
|
281 |
-
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
|
282 |
-
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
|
283 |
-
- 根据对话历史调整回答,避免重复或矛盾。
|
284 |
-
- 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
|
285 |
-
- 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
|
286 |
-
- 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度��富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
|
287 |
-
- 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。
|
288 |
-
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
|
289 |
-
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
|
290 |
-
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
|
291 |
-
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
|
292 |
-
"""
|
293 |
-
)
|
294 |
-
|
295 |
-
# 对话历史管理类
|
296 |
-
class ConversationHistory:
|
297 |
-
def __init__(self, max_length=10):
|
298 |
-
self.history = deque(maxlen=max_length)
|
299 |
-
|
300 |
-
def add_turn(self, question, answer):
|
301 |
-
self.history.append((question, answer))
|
302 |
-
|
303 |
-
def get_history(self):
|
304 |
-
return [(turn[0], turn[1]) for turn in self.history]
|
305 |
-
|
306 |
-
def clear(self):
|
307 |
-
self.history.clear()
|
308 |
-
|
309 |
-
# 用户会话状态类
|
310 |
-
class UserSession:
|
311 |
-
def __init__(self):
|
312 |
-
self.conversation = ConversationHistory()
|
313 |
-
self.output_queue = queue.Queue()
|
314 |
-
self.stop_flag = threading.Event()
|
315 |
-
|
316 |
-
# 生成回答的线程函数
|
317 |
-
def generate_answer_thread(question, session):
|
318 |
-
stop_flag = session.stop_flag
|
319 |
-
output_queue = session.output_queue
|
320 |
-
conversation = session.conversation
|
321 |
-
|
322 |
-
stop_flag.clear()
|
323 |
-
try:
|
324 |
-
history_list = conversation.get_history()
|
325 |
-
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
|
326 |
-
query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
|
327 |
-
|
328 |
-
# 1. 使用 BAAI/bge-m3 生成查询嵌入
|
329 |
-
start_time = time.time()
|
330 |
-
query_embedding = embeddings.embed_query(query_with_context)
|
331 |
-
embed_time = time.time() - start_time
|
332 |
-
output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n")
|
333 |
-
|
334 |
-
if stop_flag.is_set():
|
335 |
-
output_queue.put("生成已停止")
|
336 |
-
return
|
337 |
-
|
338 |
-
# 2. 使用混合检索(BM25 + FAISS)
|
339 |
-
start_time = time.time()
|
340 |
-
retrieved_docs_with_scores = hybrid_retrieval(
|
341 |
-
query_with_context,
|
342 |
-
vector_store,
|
343 |
-
all_documents,
|
344 |
-
top_n=15,
|
345 |
-
bm25_weight=0.4,
|
346 |
-
semantic_weight=0.6
|
347 |
-
)
|
348 |
-
retrieval_time = time.time() - start_time
|
349 |
-
output_queue.put(f"混合检索耗时: {retrieval_time:.2f} 秒\n")
|
350 |
-
|
351 |
-
if stop_flag.is_set():
|
352 |
-
output_queue.put("生成已停止")
|
353 |
-
return
|
354 |
-
|
355 |
-
# 调整 final_docs 数量,取前 10 篇
|
356 |
-
final_docs = [doc for doc, _ in retrieved_docs_with_scores][:10]
|
357 |
-
if len(final_docs) < 10:
|
358 |
-
output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
|
359 |
-
|
360 |
-
# 构造 context,包含文本内容和书目信息
|
361 |
-
context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
|
362 |
-
chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
|
363 |
-
for i, (q, a) in enumerate(history_list)]
|
364 |
-
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
|
365 |
-
|
366 |
-
# 3. 使用 LLM 生成回答
|
367 |
-
answer = ""
|
368 |
-
start_time = time.time()
|
369 |
-
for chunk in llm.stream([HumanMessage(content=prompt)]):
|
370 |
-
if stop_flag.is_set():
|
371 |
-
output_queue.put(answer + "\n\n(生成已停止)")
|
372 |
-
return
|
373 |
-
answer += chunk.content
|
374 |
-
output_queue.put(answer)
|
375 |
-
llm_time = time.time() - start_time
|
376 |
-
output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
|
377 |
-
|
378 |
-
conversation.add_turn(question, answer)
|
379 |
-
output_queue.put(answer)
|
380 |
-
|
381 |
-
except Exception as e:
|
382 |
-
output_queue.put(f"Error: {str(e)}")
|
383 |
-
|
384 |
-
# Gradio 接口函数
|
385 |
-
def answer_question(question, session_state):
|
386 |
-
if session_state is None:
|
387 |
-
session_state = UserSession()
|
388 |
-
|
389 |
-
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
|
390 |
-
thread.start()
|
391 |
-
|
392 |
-
while thread.is_alive() or not session_state.output_queue.empty():
|
393 |
-
try:
|
394 |
-
output = session_state.output_queue.get(timeout=0.1)
|
395 |
-
yield output, session_state
|
396 |
-
except queue.Empty:
|
397 |
-
continue
|
398 |
-
|
399 |
-
while not session_state.output_queue.empty():
|
400 |
-
yield session_state.output_queue.get(), session_state
|
401 |
-
|
402 |
-
def stop_generation(session_state):
|
403 |
-
if session_state is not None:
|
404 |
-
session_state.stop_flag.set()
|
405 |
-
return "生成已停止,正在中止..."
|
406 |
-
|
407 |
-
def clear_conversation():
|
408 |
-
return "对话历史已清空,请开始新的对话。", UserSession()
|
409 |
-
|
410 |
-
# 创建 Gradio 界面
|
411 |
-
with gr.Blocks(title="AI李敖助手") as interface:
|
412 |
-
gr.Markdown("### AI李敖助手")
|
413 |
-
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
|
414 |
-
|
415 |
-
session_state = gr.State(value=None)
|
416 |
-
|
417 |
-
with gr.Row():
|
418 |
-
with gr.Column(scale=3):
|
419 |
-
question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
|
420 |
-
submit_button = gr.Button("提交")
|
421 |
-
with gr.Column(scale=1):
|
422 |
-
clear_button = gr.Button("新建对话")
|
423 |
-
stop_button = gr.Button("停止生成")
|
424 |
-
|
425 |
-
output_text = gr.Textbox(label="回答", interactive=False)
|
426 |
-
|
427 |
-
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
|
428 |
-
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
|
429 |
-
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
|
430 |
-
|
431 |
-
# 启动应用
|
432 |
-
if __name__ == "__main__":
|
433 |
-
interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|