import os import gradio as gr from langchain_community.document_loaders import TextLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.prompts import PromptTemplate import numpy as np import faiss from collections import deque from langchain_core.embeddings import Embeddings import threading import queue from langchain_core.messages import HumanMessage, AIMessage from sentence_transformers import SentenceTransformer import pickle import torch from langchain_core.documents import Document import time from tqdm import tqdm import jieba # 引入中文分词库 # 获取 OPENROUTER_API_KEY 环境变量 os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "") if not os.environ["OPENROUTER_API_KEY"]: raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加") # 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3 模型,适配 CPU) class SentenceTransformerEmbeddings(Embeddings): def __init__(self, model_name="BAAI/bge-m3"): self.model = SentenceTransformer(model_name, device="cpu") self.batch_size = 64 self.query_cache = {} def embed_documents(self, texts): total_chunks = len(texts) embeddings_list = [] batch_size = 1000 print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)") start_time = time.time() with torch.no_grad(): for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"): batch_start = i batch_end = min(i + batch_size, total_chunks) batch_texts = [text.page_content for text in texts[batch_start:batch_end]] batch_start_time = time.time() batch_emb = self.model.encode( batch_texts, normalize_embeddings=True, batch_size=self.batch_size, show_progress_bar=True ) batch_time = time.time() - batch_start_time if isinstance(batch_emb, torch.Tensor): embeddings_list.append(batch_emb.cpu().numpy()) else: embeddings_list.append(batch_emb) print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒") embeddings_array = np.vstack(embeddings_list) total_time = time.time() - start_time print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒") np.save("embeddings.npy", embeddings_array) return embeddings_array def embed_query(self, text): if text in self.query_cache: return self.query_cache[text] with torch.no_grad(): emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0] self.query_cache[text] = emb return emb # 按权重混合检索函数(优化得分和多样性) def hybrid_retrieval(query, vector_store, documents, top_n=15, bm25_weight=0.4, semantic_weight=0.6): try: if not documents or not query: raise ValueError("查询或文档列表为空") # 创建文档到 ID 的映射 doc_to_id = {id(doc): str(i) for i, doc in enumerate(documents)} id_to_doc = {str(i): doc for i, doc in enumerate(documents)} # 验证索引与文档一致性 index_ids = set(vector_store.index_to_docstore_id.values()) doc_ids = set(str(i) for i in range(len(documents))) if index_ids != doc_ids: print("警告:索引与文档 ID 不匹配!index_ids:", index_ids, "doc_ids:", doc_ids) # 语义搜索(FAISS) vector_store.index.hnsw.efSearch = 300 query_embedding = vector_store.embedding_function.embed_query(query) D, I = vector_store.index.search(np.array([query_embedding]), min(top_n * 2, len(documents))) print(f"FAISS 搜索结果 - 距离 (D): {D[0][:5]}... (前5个)") print(f"FAISS 搜索结果 - 索引 (I): {I[0][:5]}... (前5个)") semantic_results = [] if D.size > 0: max_dist = np.max(D) if np.max(D) > 0 else 1.0 for idx, dist in zip(I[0], D[0]): if idx == -1: continue doc_id = vector_store.index_to_docstore_id.get(idx) if doc_id is None: continue doc = vector_store.docstore.search(doc_id) if doc: # 归一化距离为相似度(0到1,1为最相似),设置默认值 similarity = 1.0 - (dist / max_dist if max_dist > 0 else 0.5) semantic_results.append((doc, similarity)) else: print("警告:FAISS 距离数组为空,可能索引异常") # 使用 doc_id 存储语义得分 semantic_scores = {} for doc, score in semantic_results: doc_id = doc_to_id.get(id(doc)) if doc_id is not None: semantic_scores[doc_id] = score print(f"语义得分 (semantic_scores): {dict(list(semantic_scores.items())[:5])}... (前5个)") # 关键字搜索(BM25,使用 jieba 分词) tokenized_corpus = [list(jieba.cut(doc.page_content)) for doc in documents] bm25 = BM25Okapi(tokenized_corpus) tokenized_query = list(jieba.cut(query)) bm25_scores = bm25.get_scores(tokenized_query) print(f"BM25 得分 (bm25_scores): {bm25_scores[:5]}... (前5个)") # 归一化 BM25 得分 max_bm25 = max(bm25_scores) if bm25_scores.size > 0 and max(bm25_scores) > 0 else 1.0 normalized_bm25_scores = bm25_scores / max_bm25 if max_bm25 > 0 else bm25_scores print(f"归一化 BM25 得分 (normalized_bm25_scores): {normalized_bm25_scores[:5]}... (前5个)") # 合并得分 combined_scores = {} for i, doc in enumerate(documents): doc_id = str(i) semantic_score = semantic_scores.get(doc_id, 0.0) bm25_score = normalized_bm25_scores[i] if i < len(normalized_bm25_scores) else 0.0 combined_score = (bm25_weight * bm25_score) + (semantic_weight * semantic_score) combined_scores[doc_id] = combined_score # 按组合得分排序 ranked_ids = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:top_n] ranked_docs = [(id_to_doc[doc_id], score) for doc_id, score in ranked_ids] print(f"Query: {query[:100]}... (长度: {len(query)})") print(f"混合检索结果 (数量: {len(ranked_docs)}):") for i, (doc, score) in enumerate(ranked_docs): print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})") return ranked_docs except Exception as e: error_msg = str(e) print(f"错误详情: {error_msg}") raise Exception(f"混合检索失败: {error_msg}") # 构建 HNSW 索引 def build_hnsw_index(knowledge_base_path, index_path): print("开始加载文档...") start_time = time.time() loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False) documents = loader.load() load_time = time.time() - start_time print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) if not os.path.exists("chunks.pkl"): print("开始分片...") start_time = time.time() texts = [] total_chars = 0 total_bytes = 0 for i, doc in enumerate(documents): doc_chunks = text_splitter.split_documents([doc]) for chunk in doc_chunks: content = chunk.page_content file_path = chunk.metadata.get("source", "") book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·") texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"})) total_chars += len(content) total_bytes += len(content.encode('utf-8')) if i < 5: print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}") if (i + 1) % 10 == 0: print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}") with open("chunks.pkl", "wb") as f: pickle.dump(texts, f) split_time = time.time() - start_time print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒") else: with open("chunks.pkl", "rb") as f: texts = pickle.load(f) print(f"加载已有分片,共 {len(texts)} 个 chunk") if not os.path.exists("embeddings.npy"): print("开始生成嵌入(使用 BAAI/bge-m3,CPU 模式,分批处理)...") embeddings_array = embeddings.embed_documents(texts) if os.path.exists("embeddings_temp.npy"): os.remove("embeddings_temp.npy") print(f"嵌入生成完成,维度: {embeddings_array.shape}") else: embeddings_array = np.load("embeddings.npy") print(f"加载已有嵌入,维度: {embeddings_array.shape}") dimension = embeddings_array.shape[1] index = faiss.IndexHNSWFlat(dimension, 16) index.hnsw.efConstruction = 100 print("开始构建 HNSW 索引...") batch_size = 5000 total_vectors = embeddings_array.shape[0] for i in range(0, total_vectors, batch_size): batch = embeddings_array[i:i + batch_size] index.add(batch) print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}") text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)] vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True) vector_store.index = index vector_store.docstore._dict.clear() vector_store.index_to_docstore_id.clear() for i, text in enumerate(texts): doc_id = str(i) vector_store.docstore._dict[doc_id] = text vector_store.index_to_docstore_id[i] = doc_id print("开始保存索引...") vector_store.save_local(index_path) print(f"HNSW 索引已生成并保存到 '{index_path}'") return vector_store, texts # 返回 vector_store 和分片文本 # 初始化嵌入模型 embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3") print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(CPU 模式)") # 加载或生成索引 index_path = "faiss_index_hnsw_new" knowledge_base_path = "knowledge_base" if not os.path.exists(index_path): if os.path.exists(knowledge_base_path): print("检测到 knowledge_base,正在生成 HNSW 索引...") vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path) else: raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据") else: vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) vector_store.index.hnsw.efSearch = 300 print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300") with open("chunks.pkl", "rb") as f: all_documents = pickle.load(f) # 验证 all_documents 内容 book_counts = {} for doc in all_documents: book = doc.metadata.get("book", "未知来源") book_counts[book] = book_counts.get(book, 0) + 1 print(f"all_documents 书籍分布: {book_counts}") # 初始化 ChatOpenAI llm = ChatOpenAI( model="deepseek/deepseek-r1:free", api_key=os.environ["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1", timeout=60, temperature=0.3, max_tokens=130000, streaming=True ) # 定义提示词模板 prompt_template = PromptTemplate( input_variables=["context", "question", "chat_history"], template=""" 你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。 在回答时,请注意以下几点: - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。 - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。 - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为: - 引用文献: 1. [文本 1] 摘要... 出自:书名,第X页/章节。 2. [文本 2] 摘要... 出自:书名,第X页/章节。 (依此类推,至少10篇) - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。 - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。 - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。 - 根据对话历史调整回答,避免重复或矛盾。 - 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。 - 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。 - 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。 - 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。 - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 """ ) # 对话历史管理类 class ConversationHistory: def __init__(self, max_length=10): self.history = deque(maxlen=max_length) def add_turn(self, question, answer): self.history.append((question, answer)) def get_history(self): return [(turn[0], turn[1]) for turn in self.history] def clear(self): self.history.clear() # 用户会话状态类 class UserSession: def __init__(self): self.conversation = ConversationHistory() self.output_queue = queue.Queue() self.stop_flag = threading.Event() # 生成回答的线程函数 def generate_answer_thread(question, session): stop_flag = session.stop_flag output_queue = session.output_queue conversation = session.conversation stop_flag.clear() try: history_list = conversation.get_history() history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else "" query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question # 1. 使用 BAAI/bge-m3 生成查询嵌入 start_time = time.time() query_embedding = embeddings.embed_query(query_with_context) embed_time = time.time() - start_time output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n") if stop_flag.is_set(): output_queue.put("生成已停止") return # 2. 使用混合检索(BM25 + FAISS) start_time = time.time() retrieved_docs_with_scores = hybrid_retrieval( query_with_context, vector_store, all_documents, top_n=15, bm25_weight=0.4, semantic_weight=0.6 ) retrieval_time = time.time() - start_time output_queue.put(f"混合检索耗时: {retrieval_time:.2f} 秒\n") if stop_flag.is_set(): output_queue.put("生成已停止") return # 调整 final_docs 数量,取前 10 篇 final_docs = [doc for doc, _ in retrieved_docs_with_scores][:10] if len(final_docs) < 10: output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求") # 构造 context,包含文本内容和书目信息 context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)]) chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a) for i, (q, a) in enumerate(history_list)] prompt = prompt_template.format(context=context, question=question, chat_history=history_text) # 3. 使用 LLM 生成回答 answer = "" start_time = time.time() for chunk in llm.stream([HumanMessage(content=prompt)]): if stop_flag.is_set(): output_queue.put(answer + "\n\n(生成已停止)") return answer += chunk.content output_queue.put(answer) llm_time = time.time() - start_time output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒") conversation.add_turn(question, answer) output_queue.put(answer) except Exception as e: output_queue.put(f"Error: {str(e)}") # Gradio 接口函数 def answer_question(question, session_state): if session_state is None: session_state = UserSession() thread = threading.Thread(target=generate_answer_thread, args=(question, session_state)) thread.start() while thread.is_alive() or not session_state.output_queue.empty(): try: output = session_state.output_queue.get(timeout=0.1) yield output, session_state except queue.Empty: continue while not session_state.output_queue.empty(): yield session_state.output_queue.get(), session_state def stop_generation(session_state): if session_state is not None: session_state.stop_flag.set() return "生成已停止,正在中止..." def clear_conversation(): return "对话历史已清空,请开始新的对话。", UserSession() # 创建 Gradio 界面 with gr.Blocks(title="AI李敖助手") as interface: gr.Markdown("### AI李敖助手") gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。") session_state = gr.State(value=None) with gr.Row(): with gr.Column(scale=3): question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...") submit_button = gr.Button("提交") with gr.Column(scale=1): clear_button = gr.Button("新建对话") stop_button = gr.Button("停止生成") output_text = gr.Textbox(label="回答", interactive=False) submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state]) clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state]) stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text) # 启动应用 if __name__ == "__main__": interface.launch(share=True)