import os import gradio as gr import requests from langchain_community.document_loaders import TextLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.prompts import PromptTemplate import numpy as np import faiss from collections import deque from langchain_core.embeddings import Embeddings import threading import queue from langchain_core.messages import HumanMessage, AIMessage from sentence_transformers import SentenceTransformer import pickle import torch import time from tqdm import tqdm import logging # 设置日志 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # 获取环境变量 os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "") if not os.environ["OPENROUTER_API_KEY"]: raise ValueError("OPENROUTER_API_KEY 未设置") SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY") if not SILICONFLOW_API_KEY: raise ValueError("SILICONFLOW_API_KEY 未设置") # SiliconFlow API 配置 SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" # 自定义嵌入类,优化查询缓存 class SentenceTransformerEmbeddings(Embeddings): def __init__(self, model_name="BAAI/bge-m3"): device = "cuda" if torch.cuda.is_available() else "cpu" self.model = SentenceTransformer(model_name, device=device) self.batch_size = 32 # 减小批次大小以适应低内存 self.query_cache = {} self.cache_lock = threading.Lock() def embed_documents(self, texts): embeddings_list = [] batch_size = 1000 # 减小批次以降低内存压力 total_chunks = len(texts) logger.info(f"生成嵌入,文档数: {total_chunks}") with torch.no_grad(): for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"): batch_texts = [text.page_content for text in texts[i:i + batch_size]] batch_emb = self.model.encode( batch_texts, normalize_embeddings=True, batch_size=self.batch_size ) embeddings_list.append(batch_emb) embeddings_array = np.vstack(embeddings_list) np.save("embeddings.npy", embeddings_array) return embeddings_array def embed_query(self, text): with self.cache_lock: if text in self.query_cache: return self.query_cache[text] with torch.no_grad(): emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0] with self.cache_lock: self.query_cache[text] = emb if len(self.query_cache) > 1000: # 限制缓存大小 self.query_cache.pop(next(iter(self.query_cache))) return emb # 重排序函数 def rerank_documents(query, documents, top_n=15): try: doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]] headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"} payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n} response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload) response.raise_for_status() result = response.json() reranked_docs = [] for res in result["results"]: index = res["index"] score = res["relevance_score"] if index < len(documents): text, book = doc_texts[index] reranked_docs.append((documents[index], score)) return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n] except Exception as e: logger.error(f"重排序失败: {str(e)}") raise # 构建 HNSW 索引 def build_hnsw_index(knowledge_base_path, index_path): loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8")) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) for i, doc in enumerate(texts): doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "") embeddings_array = embeddings.embed_documents(texts) dimension = embeddings_array.shape[1] index = faiss.IndexHNSWFlat(dimension, 16) index.hnsw.efConstruction = 100 index.add(embeddings_array) vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings) vector_store.index = index vector_store.save_local(index_path) with open("chunks.pkl", "wb") as f: pickle.dump(texts, f) return vector_store, texts # 初始化嵌入模型和索引 embeddings = SentenceTransformerEmbeddings() index_path = "faiss_index_hnsw_new" knowledge_base_path = "knowledge_base" if not os.path.exists(index_path): vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path) else: vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度 with open("chunks.pkl", "rb") as f: all_documents = pickle.load(f) # 初始化 LLM llm = ChatOpenAI( model="deepseek/deepseek-r1:free", api_key=os.environ["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1", timeout=100, temperature=0.3, max_tokens=130000, streaming=True ) # 提示词模板 prompt_template = PromptTemplate( input_variables=["context", "question", "chat_history"], template=""" 你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。 在回答时,请注意以下几点: - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。 - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。 - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为: - 引用文献: 1. [文本 1] 摘要... 出自:书名,第X页/章节。 2. [文本 2] 摘要... 出自:书名,第X页/章节。 (依此类推,至少10篇) - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。 - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。 - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。 - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 """ ) # 对话历史管理 class ConversationHistory: def __init__(self, max_length=5): # 减少历史轮数 self.history = deque(maxlen=max_length) def add_turn(self, question, answer): self.history.append((question, answer)) def get_history(self): return [(q, a) for q, a in self.history] # 用户会话状态 class UserSession: def __init__(self): self.conversation = ConversationHistory() self.output_queue = queue.Queue() self.stop_flag = threading.Event() # 生成回答 def generate_answer_thread(question, session): stop_flag = session.stop_flag output_queue = session.output_queue conversation = session.conversation stop_flag.clear() try: # 打印用户问题到控制台 logger.info(f"用户问题: {question}") history_list = conversation.get_history() history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-3:]]) # 只用最后3轮 query_with_context = f"{history_text}\n问题: {question}" if history_text else question # 异步生成查询嵌入 embed_queue = queue.Queue() def embed_task(): start = time.time() emb = embeddings.embed_query(query_with_context) embed_queue.put((emb, time.time() - start)) embed_thread = threading.Thread(target=embed_task) embed_thread.start() embed_thread.join() query_embedding, embed_time = embed_queue.get() if stop_flag.is_set(): output_queue.put("生成已停止") return # 初始检索 start = time.time() docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50) search_time = time.time() - start if stop_flag.is_set(): output_queue.put("生成已停止") return # 重排序 initial_docs = [doc for doc, _ in docs_with_scores] start = time.time() reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs) rerank_time = time.time() - start final_docs = [doc for doc, _ in reranked_docs_with_scores][:10] # 打印重排序结果到控制台 logger.info("重排序结果(最终保留的片段及其得分):") for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1): logger.info(f"片段 {i}:") logger.info(f" 内容: {doc.page_content[:100]}...") logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}") logger.info(f" 得分: {score:.4f}") context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)]) prompt = prompt_template.format(context=context, question=question, chat_history=history_text) # 将时间信息加入回答开头 timing_info = ( f"处理时间统计:\n" f"- 嵌入时间: {embed_time:.2f} 秒\n" f"- 检索时间: {search_time:.2f} 秒\n" f"- 重排序时间: {rerank_time:.2f} 秒\n\n" ) answer = timing_info output_queue.put(answer) # 先显示时间信息 # LLM 生成回答 start = time.time() for chunk in llm.stream([HumanMessage(content=prompt)]): if stop_flag.is_set(): output_queue.put(answer + "\n(生成已停止)") return answer += chunk.content output_queue.put(answer) llm_time = time.time() - start answer += f"\n\n生成耗时: {llm_time:.2f} 秒" output_queue.put(answer) conversation.add_turn(question, answer) output_queue.put(answer) except Exception as e: output_queue.put(f"Error: {str(e)}") # Gradio 接口 def answer_question(question, session_state): if session_state is None: session_state = UserSession() thread = threading.Thread(target=generate_answer_thread, args=(question, session_state)) thread.start() while thread.is_alive() or not session_state.output_queue.empty(): try: output = session_state.output_queue.get(timeout=0.1) yield output, session_state except queue.Empty: continue def stop_generation(session_state): if session_state: session_state.stop_flag.set() return "生成已停止" def clear_conversation(): return "对话已清空", UserSession() # Gradio 界面 with gr.Blocks(title="AI李敖助手") as interface: gr.Markdown("### AI李敖助手") gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近5轮对话,输入问题以获取李敖风格的回答。") session_state = gr.State(value=None) question_input = gr.Textbox(label="问题") submit_button = gr.Button("提交") clear_button = gr.Button("新建对话") stop_button = gr.Button("停止生成") output_text = gr.Textbox(label="回答", interactive=False) submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state]) clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state]) stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text) if __name__ == "__main__": interface.launch(share=True)