Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
from langchain_community.document_loaders import TextLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import ChatOpenAI | |
from langchain.prompts import PromptTemplate | |
import numpy as np | |
import faiss | |
from collections import deque | |
from langchain_core.embeddings import Embeddings | |
import threading | |
import queue | |
from langchain_core.messages import HumanMessage, AIMessage | |
from sentence_transformers import SentenceTransformer | |
import pickle | |
import torch | |
import time | |
from tqdm import tqdm | |
import logging | |
# 设置日志 | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# 获取环境变量 | |
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "") | |
if not os.environ["OPENROUTER_API_KEY"]: | |
raise ValueError("OPENROUTER_API_KEY 未设置") | |
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY") | |
if not SILICONFLOW_API_KEY: | |
raise ValueError("SILICONFLOW_API_KEY 未设置") | |
# SiliconFlow API 配置 | |
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank" | |
# 自定义嵌入类,优化查询缓存 | |
class SentenceTransformerEmbeddings(Embeddings): | |
def __init__(self, model_name="BAAI/bge-m3"): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = SentenceTransformer(model_name, device=device) | |
self.batch_size = 32 # 减小批次大小以适应低内存 | |
self.query_cache = {} | |
self.cache_lock = threading.Lock() | |
def embed_documents(self, texts): | |
embeddings_list = [] | |
batch_size = 1000 # 减小批次以降低内存压力 | |
total_chunks = len(texts) | |
logger.info(f"生成嵌入,文档数: {total_chunks}") | |
with torch.no_grad(): | |
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"): | |
batch_texts = [text.page_content for text in texts[i:i + batch_size]] | |
batch_emb = self.model.encode( | |
batch_texts, | |
normalize_embeddings=True, | |
batch_size=self.batch_size | |
) | |
embeddings_list.append(batch_emb) | |
embeddings_array = np.vstack(embeddings_list) | |
np.save("embeddings.npy", embeddings_array) | |
return embeddings_array | |
def embed_query(self, text): | |
with self.cache_lock: | |
if text in self.query_cache: | |
return self.query_cache[text] | |
with torch.no_grad(): | |
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0] | |
with self.cache_lock: | |
self.query_cache[text] = emb | |
if len(self.query_cache) > 1000: # 限制缓存大小 | |
self.query_cache.pop(next(iter(self.query_cache))) | |
return emb | |
# 重排序函数 | |
def rerank_documents(query, documents, top_n=15): | |
try: | |
doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]] | |
headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"} | |
payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n} | |
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload) | |
response.raise_for_status() | |
result = response.json() | |
reranked_docs = [] | |
for res in result["results"]: | |
index = res["index"] | |
score = res["relevance_score"] | |
if index < len(documents): | |
text, book = doc_texts[index] | |
reranked_docs.append((documents[index], score)) | |
return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n] | |
except Exception as e: | |
logger.error(f"重排序失败: {str(e)}") | |
raise | |
# 构建 HNSW 索引 | |
def build_hnsw_index(knowledge_base_path, index_path): | |
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8")) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
texts = text_splitter.split_documents(documents) | |
for i, doc in enumerate(texts): | |
doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "") | |
embeddings_array = embeddings.embed_documents(texts) | |
dimension = embeddings_array.shape[1] | |
index = faiss.IndexHNSWFlat(dimension, 16) | |
index.hnsw.efConstruction = 100 | |
index.add(embeddings_array) | |
vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings) | |
vector_store.index = index | |
vector_store.save_local(index_path) | |
with open("chunks.pkl", "wb") as f: | |
pickle.dump(texts, f) | |
return vector_store, texts | |
# 初始化嵌入模型和索引 | |
embeddings = SentenceTransformerEmbeddings() | |
index_path = "faiss_index_hnsw_new" | |
knowledge_base_path = "knowledge_base" | |
if not os.path.exists(index_path): | |
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path) | |
else: | |
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True) | |
vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度 | |
with open("chunks.pkl", "rb") as f: | |
all_documents = pickle.load(f) | |
# 初始化 LLM | |
llm = ChatOpenAI( | |
model="deepseek/deepseek-r1:free", | |
api_key=os.environ["OPENROUTER_API_KEY"], | |
base_url="https://openrouter.ai/api/v1", | |
timeout=100, | |
temperature=0.3, | |
max_tokens=130000, | |
streaming=True | |
) | |
# 提示词模板 | |
prompt_template = PromptTemplate( | |
input_variables=["context", "question", "chat_history"], | |
template=""" | |
你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。 | |
在回答时,请注意以下几点: | |
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。 | |
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。 | |
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为: | |
- 引用文献: | |
1. [文本 1] 摘要... 出自:书名,第X页/章节。 | |
2. [文本 2] 摘要... 出自:书名,第X页/章节。 | |
(依此类推,至少10篇) | |
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。 | |
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。 | |
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。 | |
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。 | |
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。 | |
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。 | |
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。 | |
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。 | |
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。 | |
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。 | |
""" | |
) | |
# 对话历史管理 | |
class ConversationHistory: | |
def __init__(self, max_length=7): # 减少历史轮数 | |
self.history = deque(maxlen=max_length) | |
def add_turn(self, question, answer): | |
self.history.append((question, answer)) | |
def get_history(self): | |
return [(q, a) for q, a in self.history] | |
# 用户会话状态 | |
class UserSession: | |
def __init__(self): | |
self.conversation = ConversationHistory() | |
self.output_queue = queue.Queue() | |
self.stop_flag = threading.Event() | |
# 生成回答 | |
def generate_answer_thread(question, session): | |
stop_flag = session.stop_flag | |
output_queue = session.output_queue | |
conversation = session.conversation | |
stop_flag.clear() | |
try: | |
# 打印用户问题到控制台 | |
logger.info(f"用户问题: {question}") | |
history_list = conversation.get_history() | |
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-4:]]) # 只用最后5轮 | |
query_with_context = f"{history_text}\n问题: {question}" if history_text else question | |
# 异步生成查询嵌入 | |
embed_queue = queue.Queue() | |
def embed_task(): | |
start = time.time() | |
emb = embeddings.embed_query(query_with_context) | |
embed_queue.put((emb, time.time() - start)) | |
embed_thread = threading.Thread(target=embed_task) | |
embed_thread.start() | |
embed_thread.join() | |
query_embedding, embed_time = embed_queue.get() | |
if stop_flag.is_set(): | |
output_queue.put("生成已停止") | |
return | |
# 初始检索 | |
start = time.time() | |
docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50) | |
search_time = time.time() - start | |
if stop_flag.is_set(): | |
output_queue.put("生成已停止") | |
return | |
# 重排序 | |
initial_docs = [doc for doc, _ in docs_with_scores] | |
start = time.time() | |
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs) | |
rerank_time = time.time() - start | |
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10] | |
# 打印重排序结果到控制台 | |
logger.info("重排序结果(最终保留的片段及其得分):") | |
for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1): | |
logger.info(f"片段 {i}:") | |
logger.info(f" 内容: {doc.page_content[:100]}...") | |
logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}") | |
logger.info(f" 得分: {score:.4f}") | |
context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)]) | |
prompt = prompt_template.format(context=context, question=question, chat_history=history_text) | |
# 将时间信息加入回答开头 | |
timing_info = ( | |
f"处理时间统计:\n" | |
f"- 嵌入时间: {embed_time:.2f} 秒\n" | |
f"- 检索时间: {search_time:.2f} 秒\n" | |
f"- 重排序时间: {rerank_time:.2f} 秒\n\n" | |
) | |
answer = timing_info | |
output_queue.put(answer) # 先显示时间信息 | |
# LLM 生成回答 | |
start = time.time() | |
for chunk in llm.stream([HumanMessage(content=prompt)]): | |
if stop_flag.is_set(): | |
output_queue.put(answer + "\n(生成已停止)") | |
return | |
answer += chunk.content | |
output_queue.put(answer) | |
llm_time = time.time() - start | |
answer += f"\n\n生成耗时: {llm_time:.2f} 秒" | |
output_queue.put(answer) | |
conversation.add_turn(question, answer) | |
output_queue.put(answer) | |
except Exception as e: | |
output_queue.put(f"Error: {str(e)}") | |
# Gradio 接口 | |
def answer_question(question, session_state): | |
if session_state is None: | |
session_state = UserSession() | |
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state)) | |
thread.start() | |
while thread.is_alive() or not session_state.output_queue.empty(): | |
try: | |
output = session_state.output_queue.get(timeout=0.1) | |
yield output, session_state | |
except queue.Empty: | |
continue | |
def stop_generation(session_state): | |
if session_state: | |
session_state.stop_flag.set() | |
return "生成已停止" | |
def clear_conversation(): | |
return "对话已清空", UserSession() | |
# Gradio 界面 | |
with gr.Blocks(title="AI李敖助手") as interface: | |
gr.Markdown("### AI李敖助手") | |
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近7轮对话,输入问题以获取李敖风格的回答。") | |
session_state = gr.State(value=None) | |
question_input = gr.Textbox(label="问题") | |
submit_button = gr.Button("提交") | |
clear_button = gr.Button("新建对话") | |
stop_button = gr.Button("停止") | |
output_text = gr.Textbox(label="回答", interactive=False) | |
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state]) | |
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state]) | |
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text) | |
if __name__ == "__main__": | |
interface.launch(share=True) |