aileeao_test / app.py
aihuashanying's picture
Upload app.py
c4c2f6e verified
import os
import gradio as gr
import requests
from langchain_community.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
import numpy as np
import faiss
from collections import deque
from langchain_core.embeddings import Embeddings
import threading
import queue
from langchain_core.messages import HumanMessage, AIMessage
from sentence_transformers import SentenceTransformer
import pickle
import torch
import time
from tqdm import tqdm
import logging
# 设置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 获取环境变量
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
if not os.environ["OPENROUTER_API_KEY"]:
raise ValueError("OPENROUTER_API_KEY 未设置")
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
if not SILICONFLOW_API_KEY:
raise ValueError("SILICONFLOW_API_KEY 未设置")
# SiliconFlow API 配置
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank"
# 自定义嵌入类,优化查询缓存
class SentenceTransformerEmbeddings(Embeddings):
def __init__(self, model_name="BAAI/bge-m3"):
device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = SentenceTransformer(model_name, device=device)
self.batch_size = 32 # 减小批次大小以适应低内存
self.query_cache = {}
self.cache_lock = threading.Lock()
def embed_documents(self, texts):
embeddings_list = []
batch_size = 1000 # 减小批次以降低内存压力
total_chunks = len(texts)
logger.info(f"生成嵌入,文档数: {total_chunks}")
with torch.no_grad():
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"):
batch_texts = [text.page_content for text in texts[i:i + batch_size]]
batch_emb = self.model.encode(
batch_texts,
normalize_embeddings=True,
batch_size=self.batch_size
)
embeddings_list.append(batch_emb)
embeddings_array = np.vstack(embeddings_list)
np.save("embeddings.npy", embeddings_array)
return embeddings_array
def embed_query(self, text):
with self.cache_lock:
if text in self.query_cache:
return self.query_cache[text]
with torch.no_grad():
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0]
with self.cache_lock:
self.query_cache[text] = emb
if len(self.query_cache) > 1000: # 限制缓存大小
self.query_cache.pop(next(iter(self.query_cache)))
return emb
# 重排序函数
def rerank_documents(query, documents, top_n=15):
try:
doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"}
payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n}
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
reranked_docs = []
for res in result["results"]:
index = res["index"]
score = res["relevance_score"]
if index < len(documents):
text, book = doc_texts[index]
reranked_docs.append((documents[index], score))
return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
except Exception as e:
logger.error(f"重排序失败: {str(e)}")
raise
# 构建 HNSW 索引
def build_hnsw_index(knowledge_base_path, index_path):
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"))
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
for i, doc in enumerate(texts):
doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "")
embeddings_array = embeddings.embed_documents(texts)
dimension = embeddings_array.shape[1]
index = faiss.IndexHNSWFlat(dimension, 16)
index.hnsw.efConstruction = 100
index.add(embeddings_array)
vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings)
vector_store.index = index
vector_store.save_local(index_path)
with open("chunks.pkl", "wb") as f:
pickle.dump(texts, f)
return vector_store, texts
# 初始化嵌入模型和索引
embeddings = SentenceTransformerEmbeddings()
index_path = "faiss_index_hnsw_new"
knowledge_base_path = "knowledge_base"
if not os.path.exists(index_path):
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
else:
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度
with open("chunks.pkl", "rb") as f:
all_documents = pickle.load(f)
# 初始化 LLM
llm = ChatOpenAI(
model="deepseek/deepseek-r1:free",
api_key=os.environ["OPENROUTER_API_KEY"],
base_url="https://openrouter.ai/api/v1",
timeout=100,
temperature=0.3,
max_tokens=130000,
streaming=True
)
# 提示词模板
prompt_template = PromptTemplate(
input_variables=["context", "question", "chat_history"],
template="""
你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
在回答时,请注意以下几点:
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
- 引用文献:
1. [文本 1] 摘要... 出自:书名,第X页/章节。
2. [文本 2] 摘要... 出自:书名,第X页/章节。
(依此类推,至少10篇)
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
"""
)
# 对话历史管理
class ConversationHistory:
def __init__(self, max_length=7): # 减少历史轮数
self.history = deque(maxlen=max_length)
def add_turn(self, question, answer):
self.history.append((question, answer))
def get_history(self):
return [(q, a) for q, a in self.history]
# 用户会话状态
class UserSession:
def __init__(self):
self.conversation = ConversationHistory()
self.output_queue = queue.Queue()
self.stop_flag = threading.Event()
# 生成回答
def generate_answer_thread(question, session):
stop_flag = session.stop_flag
output_queue = session.output_queue
conversation = session.conversation
stop_flag.clear()
try:
# 打印用户问题到控制台
logger.info(f"用户问题: {question}")
history_list = conversation.get_history()
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-4:]]) # 只用最后5轮
query_with_context = f"{history_text}\n问题: {question}" if history_text else question
# 异步生成查询嵌入
embed_queue = queue.Queue()
def embed_task():
start = time.time()
emb = embeddings.embed_query(query_with_context)
embed_queue.put((emb, time.time() - start))
embed_thread = threading.Thread(target=embed_task)
embed_thread.start()
embed_thread.join()
query_embedding, embed_time = embed_queue.get()
if stop_flag.is_set():
output_queue.put("生成已停止")
return
# 初始检索
start = time.time()
docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50)
search_time = time.time() - start
if stop_flag.is_set():
output_queue.put("生成已停止")
return
# 重排序
initial_docs = [doc for doc, _ in docs_with_scores]
start = time.time()
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs)
rerank_time = time.time() - start
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
# 打印重排序结果到控制台
logger.info("重排序结果(最终保留的片段及其得分):")
for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1):
logger.info(f"片段 {i}:")
logger.info(f" 内容: {doc.page_content[:100]}...")
logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}")
logger.info(f" 得分: {score:.4f}")
context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)])
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
# 将时间信息加入回答开头
timing_info = (
f"处理时间统计:\n"
f"- 嵌入时间: {embed_time:.2f} 秒\n"
f"- 检索时间: {search_time:.2f} 秒\n"
f"- 重排序时间: {rerank_time:.2f} 秒\n\n"
)
answer = timing_info
output_queue.put(answer) # 先显示时间信息
# LLM 生成回答
start = time.time()
for chunk in llm.stream([HumanMessage(content=prompt)]):
if stop_flag.is_set():
output_queue.put(answer + "\n(生成已停止)")
return
answer += chunk.content
output_queue.put(answer)
llm_time = time.time() - start
answer += f"\n\n生成耗时: {llm_time:.2f} 秒"
output_queue.put(answer)
conversation.add_turn(question, answer)
output_queue.put(answer)
except Exception as e:
output_queue.put(f"Error: {str(e)}")
# Gradio 接口
def answer_question(question, session_state):
if session_state is None:
session_state = UserSession()
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
thread.start()
while thread.is_alive() or not session_state.output_queue.empty():
try:
output = session_state.output_queue.get(timeout=0.1)
yield output, session_state
except queue.Empty:
continue
def stop_generation(session_state):
if session_state:
session_state.stop_flag.set()
return "生成已停止"
def clear_conversation():
return "对话已清空", UserSession()
# Gradio 界面
with gr.Blocks(title="AI李敖助手") as interface:
gr.Markdown("### AI李敖助手")
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近7轮对话,输入问题以获取李敖风格的回答。")
session_state = gr.State(value=None)
question_input = gr.Textbox(label="问题")
submit_button = gr.Button("提交")
clear_button = gr.Button("新建对话")
stop_button = gr.Button("停止")
output_text = gr.Textbox(label="回答", interactive=False)
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
if __name__ == "__main__":
interface.launch(share=True)