Upload 2 files
Browse files- app.py +128 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sahi.utils
|
3 |
+
from sahi import AutoDetectionModel
|
4 |
+
import sahi.predict
|
5 |
+
import sahi.slicing
|
6 |
+
from PIL import Image
|
7 |
+
import numpy
|
8 |
+
|
9 |
+
IMAGE_SIZE = 640
|
10 |
+
|
11 |
+
# Images
|
12 |
+
sahi.utils.file.download_from_url(
|
13 |
+
"https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
|
14 |
+
"apple_tree.jpg",
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Model
|
20 |
+
model = AutoDetectionModel.from_pretrained(
|
21 |
+
model_type="yolov5", model_path="yolov5s6.pt", device="cpu", confidence_threshold=0.5, image_size=IMAGE_SIZE
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def sahi_yolo_inference(
|
26 |
+
image,
|
27 |
+
slice_height=512,
|
28 |
+
slice_width=512,
|
29 |
+
overlap_height_ratio=0.2,
|
30 |
+
overlap_width_ratio=0.2,
|
31 |
+
postprocess_type="NMS",
|
32 |
+
postprocess_match_metric="IOU",
|
33 |
+
postprocess_match_threshold=0.5,
|
34 |
+
postprocess_class_agnostic=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
image_width, image_height = image.size
|
38 |
+
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
39 |
+
image_height,
|
40 |
+
image_width,
|
41 |
+
slice_height,
|
42 |
+
slice_width,
|
43 |
+
False,
|
44 |
+
overlap_height_ratio,
|
45 |
+
overlap_width_ratio,
|
46 |
+
)
|
47 |
+
if len(sliced_bboxes) > 60:
|
48 |
+
raise ValueError(
|
49 |
+
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
50 |
+
)
|
51 |
+
|
52 |
+
# standard inference
|
53 |
+
prediction_result_1 = sahi.predict.get_prediction(
|
54 |
+
image=image, detection_model=model
|
55 |
+
)
|
56 |
+
print(image)
|
57 |
+
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
58 |
+
image=numpy.array(image),
|
59 |
+
object_prediction_list=prediction_result_1.object_prediction_list,
|
60 |
+
)
|
61 |
+
output_1 = Image.fromarray(visual_result_1["image"])
|
62 |
+
|
63 |
+
# sliced inference
|
64 |
+
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
65 |
+
image=image,
|
66 |
+
detection_model=model,
|
67 |
+
slice_height=int(slice_height),
|
68 |
+
slice_width=int(slice_width),
|
69 |
+
overlap_height_ratio=overlap_height_ratio,
|
70 |
+
overlap_width_ratio=overlap_width_ratio,
|
71 |
+
postprocess_type=postprocess_type,
|
72 |
+
postprocess_match_metric=postprocess_match_metric,
|
73 |
+
postprocess_match_threshold=postprocess_match_threshold,
|
74 |
+
postprocess_class_agnostic=postprocess_class_agnostic,
|
75 |
+
)
|
76 |
+
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
77 |
+
image=numpy.array(image),
|
78 |
+
object_prediction_list=prediction_result_2.object_prediction_list,
|
79 |
+
)
|
80 |
+
|
81 |
+
output_2 = Image.fromarray(visual_result_2["image"])
|
82 |
+
|
83 |
+
return output_1, output_2
|
84 |
+
|
85 |
+
|
86 |
+
inputs = [
|
87 |
+
gr.Image(type="pil", label="Original Image"),
|
88 |
+
gr.Number(default=512, label="slice_height"),
|
89 |
+
gr.Number(default=512, label="slice_width"),
|
90 |
+
gr.Number(default=0.2, label="overlap_height_ratio"),
|
91 |
+
gr.Number(default=0.2, label="overlap_width_ratio"),
|
92 |
+
gr.Dropdown(
|
93 |
+
["NMS", "GREEDYNMM"],
|
94 |
+
type="value",
|
95 |
+
value="NMS",
|
96 |
+
label="postprocess_type",
|
97 |
+
),
|
98 |
+
gr.Dropdown(
|
99 |
+
["IOU", "IOS"], type="value", default="IOU", label="postprocess_type"
|
100 |
+
),
|
101 |
+
gr.Number(default=0.5, label="postprocess_match_threshold"),
|
102 |
+
gr.Checkbox(default=True, label="postprocess_class_agnostic"),
|
103 |
+
]
|
104 |
+
|
105 |
+
outputs = [
|
106 |
+
gr.Image(type="pil", label="YOLOv5s"),
|
107 |
+
gr.Image(type="pil", label="YOLOv5s + SAHI"),
|
108 |
+
]
|
109 |
+
|
110 |
+
title = "Small Object Detection with SAHI + YOLOv5"
|
111 |
+
description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use."
|
112 |
+
article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"
|
113 |
+
examples = [
|
114 |
+
["apple_tree.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True]
|
115 |
+
|
116 |
+
]
|
117 |
+
|
118 |
+
gr.Interface(
|
119 |
+
sahi_yolo_inference,
|
120 |
+
inputs,
|
121 |
+
outputs,
|
122 |
+
title=title,
|
123 |
+
description=description,
|
124 |
+
article=article,
|
125 |
+
examples=examples,
|
126 |
+
theme="huggingface",
|
127 |
+
cache_examples=True,
|
128 |
+
).launch(debug=True, enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.10.2+cpu
|
2 |
+
torchvision==0.11.3+cpu
|
3 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
4 |
+
yolov5==7.0.8
|
5 |
+
sahi==0.11.11
|