File size: 4,394 Bytes
5cc46fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c0335
5cc46fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import cv2
import mediapipe as mp
import urllib.request
import numpy as np
import pickle
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import animation


# In[2]:





# In[3]:


mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_holistic = mp.solutions.holistic
mp_pose = mp.solutions.pose
mp_face_mesh = mp.solutions.face_mesh


# In[4]:


face_url = "http://claireye.com.tw/img/20230222.jpg"
urllib.request.urlretrieve(face_url, "face_image.jpg")


# In[5]:


# Fetch image for analysis
img_url = "http://claireye.com.tw/img/230212a.jpg"
urllib.request.urlretrieve(img_url, "pose.jpg")


# In[6]:


import gradio as gr


# In[7]:


mp_selfie = mp.solutions.selfie_segmentation


# In[8]:


def segment(image): 
    with mp_selfie.SelfieSegmentation(model_selection=0) as model: 
        res = model.process(image)
        mask = np.stack((res.segmentation_mask,)*3, axis=-1) > 0.5 
        return np.where(mask, image, cv2.blur(image, (40,40)))


# In[9]:


def facego(image): 
    with mp_face_mesh.FaceMesh(
        static_image_mode=True,
        max_num_faces=1,
        refine_landmarks=True,
        min_detection_confidence=0.5) as face_mesh:

    # Read image file with cv2 and convert from BGR to RGB
        results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

  
        annotated_image = image.copy()
        for face_landmarks in results.multi_face_landmarks:
        
            mp_drawing.draw_landmarks(
            image=annotated_image,
            landmark_list=face_landmarks,
            connections=mp_face_mesh.FACEMESH_CONTOURS,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing_styles
                .get_default_face_mesh_contours_style())
                
            mp_drawing.draw_landmarks(
            image=annotated_image,
            landmark_list=face_landmarks,
            connections=mp_face_mesh.FACEMESH_IRISES,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing_styles
                .get_default_face_mesh_iris_connections_style())

        return annotated_image    


# In[10]:


def posego(image): 
# Create a MediaPipe `Pose` object
    with mp_pose.Pose(static_image_mode=True,
                  model_complexity=2,
                  enable_segmentation=True) as pose:
        
        results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

# Copy the iamge
        annotated_image = image.copy()

# Draw pose, left and right hands, and face landmarks on the image with drawing specification defaults.
        mp_drawing.draw_landmarks(annotated_image, 
                          results.pose_landmarks, 
                          mp_pose.POSE_CONNECTIONS,
                          landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())


        return annotated_image  


# In[11]:


def inference(img, version):
    print(version)
    print("1")    
    print(img)    
    img2 = cv2.imread(img)
    print("2")      
    print(img2)    
    if version == 'face':
            img1=facego(img2)
            print("1a")            
    elif (version == 'pose'):
            img1=posego(img2)
            print("2a")            
    else:
            img1=segment(img2) 
            print("3a")            
    print("3")      
    print(img1)
    save_path = f'out.jpg'
    cv2.imwrite(save_path, img1) 
    img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
    return img1, save_path


# In[12]:


title = "pose-style"
description = "Gradio demo for pose-style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"


# In[13]:


gr.Interface(
    inference, [
        gr.inputs.Image(type="filepath",label="Input"),
        gr.inputs.Radio(['face', 'pose', 'seg'], type="value", default='pose', label='mode')
    ], [
        gr.outputs.Image(type="numpy", label="Output (The whole image)"),
        gr.outputs.File(label="Download the output image")
    ],
    title=title,
    description=description,
    article=article,
    examples=[['face_image.jpg', 'face'], ['pose.jpg', 'pose'], 
              ['pose.jpg', 'seg']]).launch()


# In[ ]: