File size: 24,686 Bytes
0da82a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import cv2
from numpy import random
from collections import deque
import numpy as np
import math
import torch
import torch.backends.cudnn as cudnn
from utils.google_utils import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer)
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from models.models import *
from utils.datasets import *
from utils.general import *
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from byte_track.bytetracker import ByteTrack
from yolov7.yolov7_detector import YOLOv7Detector
def load_classes(path):
# Loads *.names file at 'path'
with open(path, 'r') as f:
names = f.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
global names
names = load_classes('data/coco.names')
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
data_deque = {}
speed_four_line_queue = {}
object_counter = {}
# line1 = [(250,450), (1000, 450)]
line2 = [(200,500), (1050, 500)]
def xyxy_to_xywh(*xyxy):
"""" Calculates the relative bounding box from absolute pixel values. """
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
x_c = (bbox_left + bbox_w / 2)
y_c = (bbox_top + bbox_h / 2)
w = bbox_w
h = bbox_h
return x_c, y_c, w, h
def xyxy_to_tlwh(bbox_xyxy):
tlwh_bboxs = []
for i, box in enumerate(bbox_xyxy):
x1, y1, x2, y2 = [int(i) for i in box]
top = x1
left = y1
w = int(x2 - x1)
h = int(y2 - y1)
tlwh_obj = [top, left, w, h]
tlwh_bboxs.append(tlwh_obj)
return tlwh_bboxs
def compute_color_for_labels(label):
"""
Simple function that adds fixed color depending on the class
"""
if label == 0: #person #BGR
color = (85,45,255)
elif label == 2: # Car
color = (222,82,175)
elif label == 3: # Motobike
color = (0, 204, 255)
elif label == 5: # Bus
color = (0, 149, 255)
else:
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
return tuple(color)
def draw_border(img, pt1, pt2, color, thickness, r, d):
x1,y1 = pt1
x2,y2 = pt2
# Top left
cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
# Top right
cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
# Bottom left
cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
# Bottom right
cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)
cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA)
cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA)
cv2.circle(img, (x1 +r, y1+r), 2, color, 12)
cv2.circle(img, (x2 -r, y1+r), 2, color, 12)
cv2.circle(img, (x1 +r, y2-r), 2, color, 12)
cv2.circle(img, (x2 -r, y2-r), 2, color, 12)
return img
def UI_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
# cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
# c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
img = draw_border(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color, 1, 8, 2)
# cv2.line(img, c1, c2, color, 30)
# cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def estimateSpeed(location1, location2):
d_pixels = math.sqrt(math.pow(location2[0] - location1[0], 2) + math.pow(location2[1] - location1[1], 2))
ppm = 8 #Pixels per Meter
d_meters = d_pixels / ppm
time_constant = 15 * 3.6
speed = d_meters * time_constant
return speed
# Return true if line segments AB and CD intersect
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
def ccw(A,B,C):
return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])
def draw_boxes(img, bbox, object_id, identities=None, offset=(0, 0)):
# cv2.line(img, line2[0], line2[1], (0,200,0), 3)
height, width, _ = img.shape
# remove tracked point from buffer if object is lost
for key in list(data_deque):
if key not in identities:
data_deque.pop(key)
for i, box in enumerate(bbox):
x1, y1 = int(box[0]), int(box[1])
x2, y2 = x1 + int(box[2]), y1 + int(box[3])
box=[x1, y1, x2, y2]
# x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box_area = (x2-x1) * (y2-y1)
box_height = (y2-y1)
# code to find center of bottom edge
center = (int((x2+x1)/ 2), int((y2+y2)/2))
# get ID of object
id = int(identities[i]) if identities is not None else 0
# create new buffer for new object
if id not in data_deque:
data_deque[id] = deque(maxlen= 64)
speed_four_line_queue[id] = []
color = compute_color_for_labels(int(object_id[i]))
obj_name = names[int(object_id[i])]
label = '%s' % (obj_name)
# add center to buffer
data_deque[id].appendleft(center)
# print("id ", id)
# print("data_deque[id] ", data_deque[id])
if len(data_deque[id]) >= 2:
# print("data_deque[id][i-1]", data_deque[id][1], data_deque[id][0])
if intersect(data_deque[id][0], data_deque[id][1], line2[0], line2[1]):# or intersect(data_deque[id][0], data_deque[id][1], line1[0], line1[1]) or intersect(data_deque[id][0], data_deque[id][1], line3[0], line3[1]) or intersect(data_deque[id][0], data_deque[id][1], line4[0], line4[1]) :
# cv2.line(img, line2[0], line2[1], (0,100,0), 3)
obj_speed = estimateSpeed(data_deque[id][1], data_deque[id][0])
speed_four_line_queue[id].append(obj_speed)
if obj_name not in object_counter:
object_counter[obj_name] = 1
else:
object_counter[obj_name] += 1
try:
label = label + " " + str(sum(speed_four_line_queue[id])//len(speed_four_line_queue[id]))
except :
pass
UI_box(box, img, label=label, color=color, line_thickness=2)
# draw trail
for i in range(1, len(data_deque[id])):
# check if on buffer value is none
if data_deque[id][i - 1] is None or data_deque[id][i] is None:
continue
# generate dynamic thickness of trails
thickness = int(np.sqrt(64 / float(i + i)) * 1.5)
# draw trails
cv2.line(img, data_deque[id][i - 1], data_deque[id][i], color, thickness)
count = 0
for idx, (key, value) in enumerate(object_counter.items()):
# print(idx, key, value)
cnt_str = str(key) + ": " + str(value)
cv2.line(img, (width - 150 ,25+ (idx*40)), (width,25 + (idx*40)), [85,45,255], 30)
cv2.putText(img, cnt_str, (width - 150, 35 + (idx*40)), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)
count += value
return img, count
def load_yolov7_and_process_each_frame(model, vid_name, enable_GPU, save_video, confidence, assigned_class_id, kpi1_text, kpi2_text, kpi3_text, stframe):
data_deque.clear()
speed_four_line_queue.clear()
object_counter.clear()
if model == 'yolov7':
weights = 'yolov7/weights/yolov7.onnx'
elif model == 'yolov7-tiny':
weights = 'yolov7/weights/yolov7-tiny.onnx'
else:
print('Model Not Found!')
exit()
detector = YOLOv7Detector(weights=weights, use_cuda=enable_GPU, use_onnx=True)
tracker = ByteTrack(detector)
# dataset = LoadImages(vid_name, img_size=1280, auto_size=64)
vdo = cv2.VideoCapture(vid_name)
results = []
start = time.time()
count = 0
frame_id = 0
prevTime = 0
fourcc = 'mp4v' # output video codec
fps = vdo.get(cv2.CAP_PROP_FPS)
w = int(vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter('inference/output/results.mp4', cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
while vdo.isOpened():
# for path, img, im0s, vid_cap in dataset:
curr_time = time.time()
frame_id +=1
_, img = vdo.read()
if _ == False:
break
# img = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
# img, count, obj_ids = tracker.inference(img, conf_thresh=confidence, classes=assigned_class_id)
bboxes, ids, scores, obj_ids = tracker.inference(img, conf_thresh=confidence, classes=assigned_class_id)
# print(bboxes[0].shape if len(bboxes)>0 else None)
img, count = draw_boxes(img, bboxes, obj_ids, identities=ids)
currTime = time.time()
fps = 1 / (currTime - prevTime)
prevTime = currTime
# Save results (image with detections)
cv2.line(img, (20,25), (127,25), [85,45,255], 30)
cv2.putText(img, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)
if save_video:
vid_writer.write(img)
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{fps:.1f}</h1>", unsafe_allow_html=True)
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True)
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True)
# if frame_id%3==0:
# stframe.image(img, channels = 'BGR',use_column_width=True)
stframe.image(img, channels = 'BGR',use_column_width=True)
end = time.time()
print('Done. (%.3fs)' % (end - start))
cv2.destroyAllWindows()
vdo.release()
vid_writer.release()
def load_yolor_and_process_each_frame(vid_name, enable_GPU, confidence, assigned_class_id, kpi1_text, kpi2_text, kpi3_text, stframe):
data_deque.clear()
speed_four_line_queue.clear()
object_counter.clear()
out, source, weights, save_txt, imgsz, cfg = \
'inference/output', vid_name, 'yolor_p6.pt', False, 1280, 'cfg/yolor_p6.cfg'
#webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
webcam = source == 0 or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# initialize deepsort
cfg_deep = get_config()
cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")
# attempt_download("deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7", repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
deepsort = DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize GPU
if enable_GPU:
device = select_device('gpu')
else:
device = select_device('cpu')
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = Darknet(cfg, imgsz)#.cuda()
model.load_state_dict(torch.load(weights, map_location=device)['model'])
model.to(device).eval()
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
save_img = True
print("HEREHERER")
# cudnn.benchmark = True # set True to speed up constant image size inference
# dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, auto_size=64)
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
prevTime = 0
count = 0
if webcam: # code for only webcam
vid = cv2.VideoCapture(0)
while vid.isOpened():
ret, img = vid.read()
if not ret:
continue
im0s = img.copy()
print(im0s.shape)
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to bsx3x416x416
print(img.shape)
img = torch.from_numpy(img.copy()).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
print(img.shape)
# Inference
t1 = time_synchronized()
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression(pred, confidence, 0.5, classes=assigned_class_id, agnostic=False)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
print("HERE")
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0 = "webcam_out.mp4", '', im0s
# save_path = str(Path(out) / Path(p).name)
# txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
xywh_bboxs = []
confs = []
oids = []
# Write results
for *xyxy, conf, cls in det:
# to deep sort format
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
xywh_obj = [x_c, y_c, bbox_w, bbox_h]
xywh_bboxs.append(xywh_obj)
confs.append([conf.item()])
oids.append(int(cls))
# if save_txt: # Write to file
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# with open(txt_path + '.txt', 'a') as f:
# f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
xywhs = torch.Tensor(xywh_bboxs)
confss = torch.Tensor(confs)
outputs = deepsort.update(xywhs, confss, oids, im0)
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -2]
object_id = outputs[:, -1]
im0, count = draw_boxes(im0, bbox_xyxy, object_id,identities)
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
currTime = time.time()
fps = 1 / (currTime - prevTime)
prevTime = currTime
cv2.line(im0, (20,25), (127,25), [85,45,255], 30)
cv2.putText(im0, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True)
# # Save results (image with detections)
# if save_img:
# if dataset.mode == 'images':
# cv2.imwrite(save_path, im0)
# else:
# if vid_path != save_path: # new video
# vid_path = save_path
# if isinstance(vid_writer, cv2.VideoWriter):
# vid_writer.release() # release previous video writer
# fourcc = 'mp4v' # output video codec
# fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
# vid_writer.write(im0)
# data_deque assign inside yolor.py
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True)
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True)
stframe.image(im0,channels = 'BGR',use_column_width=True)
else: # without webcam
for path, img, im0s, vid_cap in dataset:
# print(path)
# print(img.shape)
# print(im0s.shape)
# print(vid_cap)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
print(img.shape)
pred = model(img)[0]
# Apply NMS
pred = non_max_suppression(pred, confidence, 0.5, classes=assigned_class_id, agnostic=False)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
xywh_bboxs = []
confs = []
oids = []
# Write results
for *xyxy, conf, cls in det:
# to deep sort format
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
xywh_obj = [x_c, y_c, bbox_w, bbox_h]
xywh_bboxs.append(xywh_obj)
confs.append([conf.item()])
oids.append(int(cls))
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
xywhs = torch.Tensor(xywh_bboxs)
confss = torch.Tensor(confs)
outputs = deepsort.update(xywhs, confss, oids, im0)
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -2]
object_id = outputs[:, -1]
im0, count = draw_boxes(im0, bbox_xyxy, object_id,identities)
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
currTime = time.time()
fps = 1 / (currTime - prevTime)
prevTime = currTime
cv2.line(im0, (20,25), (127,25), [85,45,255], 30)
cv2.putText(im0, f'FPS: {int(fps)}', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)
kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{'{:.1f}'.format(fps)}</h1>", unsafe_allow_html=True)
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
# data_deque assign inside yolor.py
kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{len(data_deque)}</h1>", unsafe_allow_html=True)
kpi3_text.write(f"<h1 style='text-align: center; color: red;'>{count}</h1>", unsafe_allow_html=True)
stframe.image(im0,channels = 'BGR',use_column_width=True)
if save_txt or save_img:
print('Results saved to %s' % Path(out))
if platform == 'darwin': # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
cv2.destroyAllWindows()
vid.release()
|