|
import numpy as np |
|
from .kalman_filter import KalmanFilter |
|
import matching |
|
from .basetrack import BaseTrack, TrackState |
|
|
|
class STrack(BaseTrack): |
|
shared_kalman = KalmanFilter() |
|
def __init__(self, tlwh, score): |
|
|
|
|
|
self._tlwh = np.asarray(tlwh, dtype=np.float) |
|
self.kalman_filter = None |
|
self.mean, self.covariance = None, None |
|
self.is_activated = False |
|
|
|
self.score = score |
|
self.tracklet_len = 0 |
|
|
|
def predict(self): |
|
mean_state = self.mean.copy() |
|
if self.state != TrackState.Tracked: |
|
mean_state[7] = 0 |
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) |
|
|
|
@staticmethod |
|
def multi_predict(stracks): |
|
if len(stracks) > 0: |
|
multi_mean = np.asarray([st.mean.copy() for st in stracks]) |
|
multi_covariance = np.asarray([st.covariance for st in stracks]) |
|
for i, st in enumerate(stracks): |
|
if st.state != TrackState.Tracked: |
|
multi_mean[i][7] = 0 |
|
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) |
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): |
|
stracks[i].mean = mean |
|
stracks[i].covariance = cov |
|
|
|
def activate(self, kalman_filter, frame_id): |
|
"""Start a new tracklet""" |
|
self.kalman_filter = kalman_filter |
|
self.track_id = self.next_id() |
|
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh)) |
|
|
|
self.tracklet_len = 0 |
|
self.state = TrackState.Tracked |
|
if frame_id == 1: |
|
self.is_activated = True |
|
|
|
self.frame_id = frame_id |
|
self.start_frame = frame_id |
|
|
|
def re_activate(self, new_track, frame_id, new_id=False): |
|
self.mean, self.covariance = self.kalman_filter.update( |
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh) |
|
) |
|
self.tracklet_len = 0 |
|
self.state = TrackState.Tracked |
|
self.is_activated = True |
|
self.frame_id = frame_id |
|
if new_id: |
|
self.track_id = self.next_id() |
|
self.score = new_track.score |
|
|
|
def update(self, new_track, frame_id): |
|
""" |
|
Update a matched track |
|
:type new_track: STrack |
|
:type frame_id: int |
|
:type update_feature: bool |
|
:return: |
|
""" |
|
self.frame_id = frame_id |
|
self.tracklet_len += 1 |
|
|
|
new_tlwh = new_track.tlwh |
|
self.mean, self.covariance = self.kalman_filter.update( |
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) |
|
self.state = TrackState.Tracked |
|
self.is_activated = True |
|
|
|
self.score = new_track.score |
|
|
|
@property |
|
|
|
def tlwh(self): |
|
"""Get current position in bounding box format `(top left x, top left y, |
|
width, height)`. |
|
""" |
|
if self.mean is None: |
|
return self._tlwh.copy() |
|
ret = self.mean[:4].copy() |
|
ret[2] *= ret[3] |
|
ret[:2] -= ret[2:] / 2 |
|
return ret |
|
|
|
@property |
|
|
|
def tlbr(self): |
|
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e., |
|
`(top left, bottom right)`. |
|
""" |
|
ret = self.tlwh.copy() |
|
ret[2:] += ret[:2] |
|
return ret |
|
|
|
@staticmethod |
|
|
|
def tlwh_to_xyah(tlwh): |
|
"""Convert bounding box to format `(center x, center y, aspect ratio, |
|
height)`, where the aspect ratio is `width / height`. |
|
""" |
|
ret = np.asarray(tlwh).copy() |
|
ret[:2] += ret[2:] / 2 |
|
ret[2] /= ret[3] |
|
return ret |
|
|
|
def to_xyah(self): |
|
return self.tlwh_to_xyah(self.tlwh) |
|
|
|
@staticmethod |
|
|
|
def tlbr_to_tlwh(tlbr): |
|
ret = np.asarray(tlbr).copy() |
|
ret[2:] -= ret[:2] |
|
return ret |
|
|
|
@staticmethod |
|
|
|
def tlwh_to_tlbr(tlwh): |
|
ret = np.asarray(tlwh).copy() |
|
ret[2:] += ret[:2] |
|
return ret |
|
|
|
def __repr__(self): |
|
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame) |
|
|
|
|
|
class BYTETracker(object): |
|
def __init__(self, track_thresh=0.5,match_thresh=0.8, track_buffer=30, mot20=False, frame_rate=30): |
|
self.tracked_stracks = [] |
|
self.lost_stracks = [] |
|
self.removed_stracks = [] |
|
|
|
self.track_thresh = track_thresh |
|
self.track_buffer = track_buffer |
|
self.mot20 = mot20 |
|
self.match_thresh = match_thresh |
|
|
|
self.frame_id = 0 |
|
self.det_thresh = track_thresh + 0.1 |
|
self.buffer_size = int(frame_rate / 30.0 * self.track_buffer) |
|
self.max_time_lost = self.buffer_size |
|
self.kalman_filter = KalmanFilter() |
|
|
|
def update(self, output_results, img_info, img_size): |
|
self.frame_id += 1 |
|
activated_starcks = [] |
|
refind_stracks = [] |
|
lost_stracks = [] |
|
removed_stracks = [] |
|
|
|
if output_results.shape[1] == 5: |
|
scores = output_results[:, 4] |
|
bboxes = output_results[:, :4] |
|
else: |
|
output_results = output_results.cpu().numpy() |
|
scores = output_results[:, 4] * output_results[:, 5] |
|
bboxes = output_results[:, :4] |
|
img_h, img_w = img_info[0], img_info[1] |
|
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w)) |
|
bboxes /= scale |
|
|
|
remain_inds = scores > self.track_thresh |
|
inds_low = scores > 0.1 |
|
inds_high = scores < self.track_thresh |
|
|
|
inds_second = np.logical_and(inds_low, inds_high) |
|
dets_second = bboxes[inds_second] |
|
dets = bboxes[remain_inds] |
|
scores_keep = scores[remain_inds] |
|
scores_second = scores[inds_second] |
|
|
|
if len(dets) > 0: |
|
'''Detections''' |
|
detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for |
|
(tlbr, s) in zip(dets, scores_keep)] |
|
else: |
|
detections = [] |
|
|
|
''' Add newly detected tracklets to tracked_stracks''' |
|
unconfirmed = [] |
|
tracked_stracks = [] |
|
for track in self.tracked_stracks: |
|
if not track.is_activated: |
|
unconfirmed.append(track) |
|
else: |
|
tracked_stracks.append(track) |
|
|
|
''' Step 2: First association, with high score detection boxes''' |
|
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks) |
|
|
|
STrack.multi_predict(strack_pool) |
|
dists = matching.iou_distance(strack_pool, detections) |
|
if not self.mot20: |
|
dists = matching.fuse_score(dists, detections) |
|
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.match_thresh) |
|
|
|
for itracked, idet in matches: |
|
track = strack_pool[itracked] |
|
det = detections[idet] |
|
if track.state == TrackState.Tracked: |
|
track.update(detections[idet], self.frame_id) |
|
activated_starcks.append(track) |
|
else: |
|
track.re_activate(det, self.frame_id, new_id=False) |
|
refind_stracks.append(track) |
|
|
|
''' Step 3: Second association, with low score detection boxes''' |
|
|
|
if len(dets_second) > 0: |
|
'''Detections''' |
|
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for |
|
(tlbr, s) in zip(dets_second, scores_second)] |
|
else: |
|
detections_second = [] |
|
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] |
|
dists = matching.iou_distance(r_tracked_stracks, detections_second) |
|
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5) |
|
for itracked, idet in matches: |
|
track = r_tracked_stracks[itracked] |
|
det = detections_second[idet] |
|
if track.state == TrackState.Tracked: |
|
track.update(det, self.frame_id) |
|
activated_starcks.append(track) |
|
else: |
|
track.re_activate(det, self.frame_id, new_id=False) |
|
refind_stracks.append(track) |
|
|
|
for it in u_track: |
|
track = r_tracked_stracks[it] |
|
if not track.state == TrackState.Lost: |
|
track.mark_lost() |
|
lost_stracks.append(track) |
|
|
|
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' |
|
detections = [detections[i] for i in u_detection] |
|
dists = matching.iou_distance(unconfirmed, detections) |
|
if not self.mot20: |
|
dists = matching.fuse_score(dists, detections) |
|
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) |
|
for itracked, idet in matches: |
|
unconfirmed[itracked].update(detections[idet], self.frame_id) |
|
activated_starcks.append(unconfirmed[itracked]) |
|
for it in u_unconfirmed: |
|
track = unconfirmed[it] |
|
track.mark_removed() |
|
removed_stracks.append(track) |
|
|
|
""" Step 4: Init new stracks""" |
|
for inew in u_detection: |
|
track = detections[inew] |
|
if track.score < self.det_thresh: |
|
continue |
|
track.activate(self.kalman_filter, self.frame_id) |
|
activated_starcks.append(track) |
|
""" Step 5: Update state""" |
|
for track in self.lost_stracks: |
|
if self.frame_id - track.end_frame > self.max_time_lost: |
|
track.mark_removed() |
|
removed_stracks.append(track) |
|
|
|
|
|
|
|
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] |
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks) |
|
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks) |
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks) |
|
self.lost_stracks.extend(lost_stracks) |
|
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks) |
|
self.removed_stracks.extend(removed_stracks) |
|
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) |
|
|
|
output_stracks = [track for track in self.tracked_stracks if track.is_activated] |
|
|
|
return output_stracks |
|
|
|
|
|
def joint_stracks(tlista, tlistb): |
|
exists = {} |
|
res = [] |
|
for t in tlista: |
|
exists[t.track_id] = 1 |
|
res.append(t) |
|
for t in tlistb: |
|
tid = t.track_id |
|
if not exists.get(tid, 0): |
|
exists[tid] = 1 |
|
res.append(t) |
|
return res |
|
|
|
|
|
def sub_stracks(tlista, tlistb): |
|
stracks = {} |
|
for t in tlista: |
|
stracks[t.track_id] = t |
|
for t in tlistb: |
|
tid = t.track_id |
|
if stracks.get(tid, 0): |
|
del stracks[tid] |
|
return list(stracks.values()) |
|
|
|
|
|
def remove_duplicate_stracks(stracksa, stracksb): |
|
pdist = matching.iou_distance(stracksa, stracksb) |
|
pairs = np.where(pdist < 0.15) |
|
dupa, dupb = list(), list() |
|
for p, q in zip(*pairs): |
|
timep = stracksa[p].frame_id - stracksa[p].start_frame |
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame |
|
if timep > timeq: |
|
dupb.append(q) |
|
else: |
|
dupa.append(p) |
|
resa = [t for i, t in enumerate(stracksa) if not i in dupa] |
|
resb = [t for i, t in enumerate(stracksb) if not i in dupb] |
|
return resa, resb |
|
|