Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,37 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import soundfile as sf
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# Load the pre-trained processor and model
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn")
|
9 |
|
10 |
+
def speech_to_text(audio):
|
11 |
+
# Load audio file
|
12 |
+
speech, sample_rate = sf.read(audio)
|
13 |
+
|
14 |
+
# Preprocess the audio file
|
15 |
+
inputs = processor(speech, sampling_rate=sample_rate, return_tensors="pt", padding=True)
|
16 |
+
|
17 |
+
# Perform inference
|
18 |
+
with torch.no_grad():
|
19 |
+
logits = model(**inputs).logits
|
20 |
+
|
21 |
+
# Decode the predicted ids to text
|
22 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
23 |
+
transcription = processor.batch_decode(predicted_ids)
|
24 |
+
|
25 |
+
return transcription[0]
|
26 |
+
|
27 |
+
# Create the Gradio interface
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=speech_to_text,
|
30 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
31 |
+
outputs="text",
|
32 |
+
title="Chinese Speech Recognition",
|
33 |
+
description="Upload an audio file and get the transcribed text using the wav2vec2-large-xlsr-53-chinese-zh-cn model."
|
34 |
+
)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
iface.launch()
|