Delete app.py
Browse files
app.py
DELETED
|
@@ -1,1216 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Cursor Rules Generator - Hugging Face Spaces App
|
| 3 |
-
|
| 4 |
-
This module implements the Gradio interface for Hugging Face Spaces deployment.
|
| 5 |
-
All code is self-contained in this file to avoid import issues.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import gradio as gr
|
| 10 |
-
import json
|
| 11 |
-
import requests
|
| 12 |
-
import traceback
|
| 13 |
-
from dotenv import load_dotenv
|
| 14 |
-
from abc import ABC, abstractmethod
|
| 15 |
-
from typing import Dict, List, Optional, Any
|
| 16 |
-
|
| 17 |
-
# Load environment variables
|
| 18 |
-
load_dotenv()
|
| 19 |
-
|
| 20 |
-
# Configuration settings
|
| 21 |
-
class Settings:
|
| 22 |
-
"""Application settings."""
|
| 23 |
-
|
| 24 |
-
# Application settings
|
| 25 |
-
APP_NAME = "Cursor Rules Generator"
|
| 26 |
-
DEBUG = os.getenv("DEBUG", "False").lower() == "true"
|
| 27 |
-
|
| 28 |
-
# API keys
|
| 29 |
-
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "")
|
| 30 |
-
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
| 31 |
-
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
| 32 |
-
|
| 33 |
-
# Default settings
|
| 34 |
-
DEFAULT_PROVIDER = os.getenv("DEFAULT_PROVIDER", "gemini")
|
| 35 |
-
DEFAULT_RULE_TYPE = os.getenv("DEFAULT_RULE_TYPE", "Always")
|
| 36 |
-
|
| 37 |
-
# LLM provider settings
|
| 38 |
-
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta"
|
| 39 |
-
OPENAI_API_URL = "https://api.openai.com/v1"
|
| 40 |
-
OPENROUTER_API_URL = "https://openrouter.ai/api/v1"
|
| 41 |
-
|
| 42 |
-
# LLM model settings
|
| 43 |
-
DEFAULT_GEMINI_MODEL = os.getenv("DEFAULT_GEMINI_MODEL", "gemini-2.0-flash")
|
| 44 |
-
DEFAULT_OPENAI_MODEL = os.getenv("DEFAULT_OPENAI_MODEL", "gpt-4o")
|
| 45 |
-
DEFAULT_OPENROUTER_MODEL = os.getenv("DEFAULT_OPENROUTER_MODEL", "openai/gpt-4o")
|
| 46 |
-
|
| 47 |
-
# Rule generation settings
|
| 48 |
-
MAX_RULE_LENGTH = int(os.getenv("MAX_RULE_LENGTH", "10000"))
|
| 49 |
-
DEFAULT_TEMPERATURE = float(os.getenv("DEFAULT_TEMPERATURE", "0.7"))
|
| 50 |
-
|
| 51 |
-
# LLM Adapter Interface
|
| 52 |
-
class LLMAdapter(ABC):
|
| 53 |
-
"""Base adapter interface for LLM providers."""
|
| 54 |
-
|
| 55 |
-
@abstractmethod
|
| 56 |
-
def initialize(self, api_key: str, **kwargs) -> None:
|
| 57 |
-
"""Initialize the adapter with API key and optional parameters."""
|
| 58 |
-
pass
|
| 59 |
-
|
| 60 |
-
@abstractmethod
|
| 61 |
-
def validate_api_key(self, api_key: str) -> bool:
|
| 62 |
-
"""Validate the API key."""
|
| 63 |
-
pass
|
| 64 |
-
|
| 65 |
-
@abstractmethod
|
| 66 |
-
def get_available_models(self) -> List[Dict[str, str]]:
|
| 67 |
-
"""Get a list of available models from the provider."""
|
| 68 |
-
pass
|
| 69 |
-
|
| 70 |
-
@abstractmethod
|
| 71 |
-
def generate_rule(
|
| 72 |
-
self,
|
| 73 |
-
model: str,
|
| 74 |
-
rule_type: str,
|
| 75 |
-
description: str,
|
| 76 |
-
content: str,
|
| 77 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 78 |
-
) -> str:
|
| 79 |
-
"""Generate a Cursor Rule using the LLM provider."""
|
| 80 |
-
pass
|
| 81 |
-
|
| 82 |
-
# Gemini Adapter
|
| 83 |
-
class GeminiAdapter(LLMAdapter):
|
| 84 |
-
"""Adapter for Google's Gemini API."""
|
| 85 |
-
|
| 86 |
-
def __init__(self):
|
| 87 |
-
"""Initialize the Gemini adapter."""
|
| 88 |
-
self.api_key = None
|
| 89 |
-
self.api_url = Settings.GEMINI_API_URL
|
| 90 |
-
self.initialized = False
|
| 91 |
-
self.last_error = None
|
| 92 |
-
|
| 93 |
-
def initialize(self, api_key: str, **kwargs) -> None:
|
| 94 |
-
"""Initialize the adapter with API key and optional parameters."""
|
| 95 |
-
self.api_key = api_key
|
| 96 |
-
self.api_url = kwargs.get('api_url', Settings.GEMINI_API_URL)
|
| 97 |
-
self.initialized = True
|
| 98 |
-
|
| 99 |
-
def validate_api_key(self, api_key: str) -> bool:
|
| 100 |
-
"""Validate the Gemini API key."""
|
| 101 |
-
try:
|
| 102 |
-
# Try to list models with the provided API key
|
| 103 |
-
url = f"{self.api_url}/models?key={api_key}"
|
| 104 |
-
response = requests.get(url)
|
| 105 |
-
|
| 106 |
-
# Check if the request was successful
|
| 107 |
-
if response.status_code == 200:
|
| 108 |
-
return True
|
| 109 |
-
|
| 110 |
-
# Store error details for debugging
|
| 111 |
-
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
|
| 112 |
-
print(f"Gemini API validation failed: {self.last_error}")
|
| 113 |
-
return False
|
| 114 |
-
except Exception as e:
|
| 115 |
-
# Store exception details for debugging
|
| 116 |
-
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
|
| 117 |
-
print(f"Gemini API validation exception: {self.last_error}")
|
| 118 |
-
return False
|
| 119 |
-
|
| 120 |
-
def get_available_models(self) -> List[Dict[str, str]]:
|
| 121 |
-
"""Get a list of available Gemini models."""
|
| 122 |
-
if not self.initialized:
|
| 123 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 124 |
-
|
| 125 |
-
try:
|
| 126 |
-
# Get available models
|
| 127 |
-
url = f"{self.api_url}/models?key={self.api_key}"
|
| 128 |
-
response = requests.get(url)
|
| 129 |
-
|
| 130 |
-
if response.status_code != 200:
|
| 131 |
-
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
|
| 132 |
-
raise ValueError(f"Failed to get models: {response.text}")
|
| 133 |
-
|
| 134 |
-
data = response.json()
|
| 135 |
-
|
| 136 |
-
# Filter for Gemini models and format the response
|
| 137 |
-
models = []
|
| 138 |
-
for model in data.get('models', []):
|
| 139 |
-
if 'gemini' in model.get('name', '').lower():
|
| 140 |
-
model_id = model.get('name').split('/')[-1]
|
| 141 |
-
models.append({
|
| 142 |
-
'id': model_id,
|
| 143 |
-
'name': self._format_model_name(model_id)
|
| 144 |
-
})
|
| 145 |
-
|
| 146 |
-
# If no models found, return default models
|
| 147 |
-
if not models:
|
| 148 |
-
models = [
|
| 149 |
-
{'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
|
| 150 |
-
{'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
|
| 151 |
-
{'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
|
| 152 |
-
]
|
| 153 |
-
|
| 154 |
-
return models
|
| 155 |
-
except Exception as e:
|
| 156 |
-
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
|
| 157 |
-
# Return default models on error
|
| 158 |
-
return [
|
| 159 |
-
{'id': 'gemini-2.5-pro', 'name': 'Gemini 2.5 Pro'},
|
| 160 |
-
{'id': 'gemini-2.0-flash', 'name': 'Gemini 2.0 Flash'},
|
| 161 |
-
{'id': 'gemini-2.0-flash-lite', 'name': 'Gemini 2.0 Flash-Lite'}
|
| 162 |
-
]
|
| 163 |
-
|
| 164 |
-
def generate_rule(
|
| 165 |
-
self,
|
| 166 |
-
model: str,
|
| 167 |
-
rule_type: str,
|
| 168 |
-
description: str,
|
| 169 |
-
content: str,
|
| 170 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 171 |
-
) -> str:
|
| 172 |
-
"""Generate a Cursor Rule using Gemini."""
|
| 173 |
-
if not self.initialized:
|
| 174 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 175 |
-
|
| 176 |
-
# Set default parameters if not provided
|
| 177 |
-
if parameters is None:
|
| 178 |
-
parameters = {}
|
| 179 |
-
|
| 180 |
-
# Extract parameters
|
| 181 |
-
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
|
| 182 |
-
globs = parameters.get('globs', '')
|
| 183 |
-
referenced_files = parameters.get('referenced_files', '')
|
| 184 |
-
prompt = parameters.get('prompt', '')
|
| 185 |
-
|
| 186 |
-
# Prepare the prompt for Gemini
|
| 187 |
-
system_prompt = """
|
| 188 |
-
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
|
| 189 |
-
|
| 190 |
-
MDC format example:
|
| 191 |
-
---
|
| 192 |
-
description: RPC Service boilerplate
|
| 193 |
-
globs:
|
| 194 |
-
alwaysApply: false
|
| 195 |
-
---
|
| 196 |
-
|
| 197 |
-
- Use our internal RPC pattern when defining services
|
| 198 |
-
- Always use snake_case for service names.
|
| 199 |
-
|
| 200 |
-
@service-template.ts
|
| 201 |
-
"""
|
| 202 |
-
|
| 203 |
-
user_prompt = f"""
|
| 204 |
-
Create a Cursor Rule with the following details:
|
| 205 |
-
|
| 206 |
-
Rule Type: {rule_type}
|
| 207 |
-
Description: {description}
|
| 208 |
-
Content: {content}
|
| 209 |
-
"""
|
| 210 |
-
|
| 211 |
-
if globs:
|
| 212 |
-
user_prompt += f"\nGlobs: {globs}"
|
| 213 |
-
|
| 214 |
-
if referenced_files:
|
| 215 |
-
user_prompt += f"\nReferenced Files: {referenced_files}"
|
| 216 |
-
|
| 217 |
-
if prompt:
|
| 218 |
-
user_prompt += f"\nAdditional Instructions: {prompt}"
|
| 219 |
-
|
| 220 |
-
# Prepare the API request
|
| 221 |
-
url = f"{self.api_url}/models/{model}:generateContent?key={self.api_key}"
|
| 222 |
-
|
| 223 |
-
payload = {
|
| 224 |
-
"contents": [
|
| 225 |
-
{
|
| 226 |
-
"role": "user",
|
| 227 |
-
"parts": [
|
| 228 |
-
{"text": system_prompt + "\n\n" + user_prompt}
|
| 229 |
-
]
|
| 230 |
-
}
|
| 231 |
-
],
|
| 232 |
-
"generationConfig": {
|
| 233 |
-
"temperature": temperature,
|
| 234 |
-
"topP": 0.8,
|
| 235 |
-
"topK": 40,
|
| 236 |
-
"maxOutputTokens": 2048
|
| 237 |
-
}
|
| 238 |
-
}
|
| 239 |
-
|
| 240 |
-
# Make the API request
|
| 241 |
-
try:
|
| 242 |
-
response = requests.post(url, json=payload)
|
| 243 |
-
|
| 244 |
-
if response.status_code != 200:
|
| 245 |
-
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
|
| 246 |
-
raise ValueError(f"Failed to generate rule: {response.text}")
|
| 247 |
-
|
| 248 |
-
data = response.json()
|
| 249 |
-
|
| 250 |
-
# Extract the generated text
|
| 251 |
-
generated_text = data.get('candidates', [{}])[0].get('content', {}).get('parts', [{}])[0].get('text', '')
|
| 252 |
-
|
| 253 |
-
# If no text was generated, create a basic rule
|
| 254 |
-
if not generated_text:
|
| 255 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 256 |
-
|
| 257 |
-
return generated_text
|
| 258 |
-
except Exception as e:
|
| 259 |
-
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
|
| 260 |
-
# Create a basic rule on error
|
| 261 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 262 |
-
|
| 263 |
-
def _format_model_name(self, model_id: str) -> str:
|
| 264 |
-
"""Format a model ID into a human-readable name."""
|
| 265 |
-
# Replace hyphens with spaces and capitalize each word
|
| 266 |
-
name = model_id.replace('-', ' ').title()
|
| 267 |
-
|
| 268 |
-
# Special case handling
|
| 269 |
-
name = name.replace('Gemini ', 'Gemini ')
|
| 270 |
-
name = name.replace('Pro ', 'Pro ')
|
| 271 |
-
name = name.replace('Flash ', 'Flash ')
|
| 272 |
-
name = name.replace('Lite', 'Lite')
|
| 273 |
-
|
| 274 |
-
return name
|
| 275 |
-
|
| 276 |
-
def _create_basic_rule(
|
| 277 |
-
self,
|
| 278 |
-
rule_type: str,
|
| 279 |
-
description: str,
|
| 280 |
-
content: str,
|
| 281 |
-
globs: str = '',
|
| 282 |
-
referenced_files: str = ''
|
| 283 |
-
) -> str:
|
| 284 |
-
"""Create a basic rule in MDC format without using the LLM."""
|
| 285 |
-
# Create MDC format
|
| 286 |
-
mdc = '---\n'
|
| 287 |
-
mdc += f'description: {description}\n'
|
| 288 |
-
|
| 289 |
-
if rule_type == 'Auto Attached' and globs:
|
| 290 |
-
mdc += f'globs: {globs}\n'
|
| 291 |
-
|
| 292 |
-
if rule_type == 'Always':
|
| 293 |
-
mdc += 'alwaysApply: true\n'
|
| 294 |
-
else:
|
| 295 |
-
mdc += 'alwaysApply: false\n'
|
| 296 |
-
|
| 297 |
-
mdc += '---\n\n'
|
| 298 |
-
mdc += content + '\n'
|
| 299 |
-
|
| 300 |
-
# Add referenced files
|
| 301 |
-
if referenced_files:
|
| 302 |
-
mdc += '\n' + referenced_files
|
| 303 |
-
|
| 304 |
-
return mdc
|
| 305 |
-
|
| 306 |
-
# OpenAI Adapter
|
| 307 |
-
class OpenAIAdapter(LLMAdapter):
|
| 308 |
-
"""Adapter for OpenAI API."""
|
| 309 |
-
|
| 310 |
-
def __init__(self):
|
| 311 |
-
"""Initialize the OpenAI adapter."""
|
| 312 |
-
self.api_key = None
|
| 313 |
-
self.api_url = Settings.OPENAI_API_URL
|
| 314 |
-
self.initialized = False
|
| 315 |
-
self.last_error = None
|
| 316 |
-
|
| 317 |
-
def initialize(self, api_key: str, **kwargs) -> None:
|
| 318 |
-
"""Initialize the adapter with API key and optional parameters."""
|
| 319 |
-
self.api_key = api_key
|
| 320 |
-
self.api_url = kwargs.get('api_url', Settings.OPENAI_API_URL)
|
| 321 |
-
self.initialized = True
|
| 322 |
-
|
| 323 |
-
def validate_api_key(self, api_key: str) -> bool:
|
| 324 |
-
"""Validate the OpenAI API key."""
|
| 325 |
-
try:
|
| 326 |
-
# Try to list models with the provided API key
|
| 327 |
-
url = f"{self.api_url}/models"
|
| 328 |
-
headers = {
|
| 329 |
-
"Authorization": f"Bearer {api_key}"
|
| 330 |
-
}
|
| 331 |
-
response = requests.get(url, headers=headers)
|
| 332 |
-
|
| 333 |
-
# Check if the request was successful
|
| 334 |
-
if response.status_code == 200:
|
| 335 |
-
return True
|
| 336 |
-
|
| 337 |
-
# Store error details for debugging
|
| 338 |
-
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
|
| 339 |
-
print(f"OpenAI API validation failed: {self.last_error}")
|
| 340 |
-
return False
|
| 341 |
-
except Exception as e:
|
| 342 |
-
# Store exception details for debugging
|
| 343 |
-
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
|
| 344 |
-
print(f"OpenAI API validation exception: {self.last_error}")
|
| 345 |
-
return False
|
| 346 |
-
|
| 347 |
-
def get_available_models(self) -> List[Dict[str, str]]:
|
| 348 |
-
"""Get a list of available OpenAI models."""
|
| 349 |
-
if not self.initialized:
|
| 350 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 351 |
-
|
| 352 |
-
try:
|
| 353 |
-
# Get available models
|
| 354 |
-
url = f"{self.api_url}/models"
|
| 355 |
-
headers = {
|
| 356 |
-
"Authorization": f"Bearer {self.api_key}"
|
| 357 |
-
}
|
| 358 |
-
response = requests.get(url, headers=headers)
|
| 359 |
-
|
| 360 |
-
if response.status_code != 200:
|
| 361 |
-
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
|
| 362 |
-
raise ValueError(f"Failed to get models: {response.text}")
|
| 363 |
-
|
| 364 |
-
data = response.json()
|
| 365 |
-
|
| 366 |
-
# Filter for chat models and format the response
|
| 367 |
-
models = []
|
| 368 |
-
for model in data.get('data', []):
|
| 369 |
-
model_id = model.get('id')
|
| 370 |
-
if any(prefix in model_id for prefix in ['gpt-4', 'gpt-3.5']):
|
| 371 |
-
models.append({
|
| 372 |
-
'id': model_id,
|
| 373 |
-
'name': self._format_model_name(model_id)
|
| 374 |
-
})
|
| 375 |
-
|
| 376 |
-
# If no models found, return default models
|
| 377 |
-
if not models:
|
| 378 |
-
models = [
|
| 379 |
-
{'id': 'gpt-4o', 'name': 'GPT-4o'},
|
| 380 |
-
{'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
|
| 381 |
-
{'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
|
| 382 |
-
]
|
| 383 |
-
|
| 384 |
-
return models
|
| 385 |
-
except Exception as e:
|
| 386 |
-
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
|
| 387 |
-
# Return default models on error
|
| 388 |
-
return [
|
| 389 |
-
{'id': 'gpt-4o', 'name': 'GPT-4o'},
|
| 390 |
-
{'id': 'gpt-4-turbo', 'name': 'GPT-4 Turbo'},
|
| 391 |
-
{'id': 'gpt-3.5-turbo', 'name': 'GPT-3.5 Turbo'}
|
| 392 |
-
]
|
| 393 |
-
|
| 394 |
-
def generate_rule(
|
| 395 |
-
self,
|
| 396 |
-
model: str,
|
| 397 |
-
rule_type: str,
|
| 398 |
-
description: str,
|
| 399 |
-
content: str,
|
| 400 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 401 |
-
) -> str:
|
| 402 |
-
"""Generate a Cursor Rule using OpenAI."""
|
| 403 |
-
if not self.initialized:
|
| 404 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 405 |
-
|
| 406 |
-
# Set default parameters if not provided
|
| 407 |
-
if parameters is None:
|
| 408 |
-
parameters = {}
|
| 409 |
-
|
| 410 |
-
# Extract parameters
|
| 411 |
-
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
|
| 412 |
-
globs = parameters.get('globs', '')
|
| 413 |
-
referenced_files = parameters.get('referenced_files', '')
|
| 414 |
-
prompt = parameters.get('prompt', '')
|
| 415 |
-
|
| 416 |
-
# Prepare the prompt for OpenAI
|
| 417 |
-
system_prompt = """
|
| 418 |
-
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
|
| 419 |
-
|
| 420 |
-
MDC format example:
|
| 421 |
-
---
|
| 422 |
-
description: RPC Service boilerplate
|
| 423 |
-
globs:
|
| 424 |
-
alwaysApply: false
|
| 425 |
-
---
|
| 426 |
-
|
| 427 |
-
- Use our internal RPC pattern when defining services
|
| 428 |
-
- Always use snake_case for service names.
|
| 429 |
-
|
| 430 |
-
@service-template.ts
|
| 431 |
-
"""
|
| 432 |
-
|
| 433 |
-
user_prompt = f"""
|
| 434 |
-
Create a Cursor Rule with the following details:
|
| 435 |
-
|
| 436 |
-
Rule Type: {rule_type}
|
| 437 |
-
Description: {description}
|
| 438 |
-
Content: {content}
|
| 439 |
-
"""
|
| 440 |
-
|
| 441 |
-
if globs:
|
| 442 |
-
user_prompt += f"\nGlobs: {globs}"
|
| 443 |
-
|
| 444 |
-
if referenced_files:
|
| 445 |
-
user_prompt += f"\nReferenced Files: {referenced_files}"
|
| 446 |
-
|
| 447 |
-
if prompt:
|
| 448 |
-
user_prompt += f"\nAdditional Instructions: {prompt}"
|
| 449 |
-
|
| 450 |
-
# Prepare the API request
|
| 451 |
-
url = f"{self.api_url}/chat/completions"
|
| 452 |
-
headers = {
|
| 453 |
-
"Authorization": f"Bearer {self.api_key}",
|
| 454 |
-
"Content-Type": "application/json"
|
| 455 |
-
}
|
| 456 |
-
|
| 457 |
-
payload = {
|
| 458 |
-
"model": model,
|
| 459 |
-
"messages": [
|
| 460 |
-
{
|
| 461 |
-
"role": "system",
|
| 462 |
-
"content": system_prompt
|
| 463 |
-
},
|
| 464 |
-
{
|
| 465 |
-
"role": "user",
|
| 466 |
-
"content": user_prompt
|
| 467 |
-
}
|
| 468 |
-
],
|
| 469 |
-
"temperature": temperature,
|
| 470 |
-
"max_tokens": 2048
|
| 471 |
-
}
|
| 472 |
-
|
| 473 |
-
# Make the API request
|
| 474 |
-
try:
|
| 475 |
-
response = requests.post(url, headers=headers, json=payload)
|
| 476 |
-
|
| 477 |
-
if response.status_code != 200:
|
| 478 |
-
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
|
| 479 |
-
raise ValueError(f"Failed to generate rule: {response.text}")
|
| 480 |
-
|
| 481 |
-
data = response.json()
|
| 482 |
-
|
| 483 |
-
# Extract the generated text
|
| 484 |
-
generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 485 |
-
|
| 486 |
-
# If no text was generated, create a basic rule
|
| 487 |
-
if not generated_text:
|
| 488 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 489 |
-
|
| 490 |
-
return generated_text
|
| 491 |
-
except Exception as e:
|
| 492 |
-
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
|
| 493 |
-
# Create a basic rule on error
|
| 494 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 495 |
-
|
| 496 |
-
def _format_model_name(self, model_id: str) -> str:
|
| 497 |
-
"""Format a model ID into a human-readable name."""
|
| 498 |
-
# Replace hyphens with spaces and capitalize each word
|
| 499 |
-
name = model_id.replace('-', ' ').title()
|
| 500 |
-
|
| 501 |
-
# Special case handling
|
| 502 |
-
name = name.replace('Gpt ', 'GPT ')
|
| 503 |
-
name = name.replace('Gpt4', 'GPT-4')
|
| 504 |
-
name = name.replace('Gpt3', 'GPT-3')
|
| 505 |
-
name = name.replace('Gpt 4', 'GPT-4')
|
| 506 |
-
name = name.replace('Gpt 3', 'GPT-3')
|
| 507 |
-
name = name.replace('Turbo', 'Turbo')
|
| 508 |
-
name = name.replace('O', 'o')
|
| 509 |
-
|
| 510 |
-
return name
|
| 511 |
-
|
| 512 |
-
def _create_basic_rule(
|
| 513 |
-
self,
|
| 514 |
-
rule_type: str,
|
| 515 |
-
description: str,
|
| 516 |
-
content: str,
|
| 517 |
-
globs: str = '',
|
| 518 |
-
referenced_files: str = ''
|
| 519 |
-
) -> str:
|
| 520 |
-
"""Create a basic rule in MDC format without using the LLM."""
|
| 521 |
-
# Create MDC format
|
| 522 |
-
mdc = '---\n'
|
| 523 |
-
mdc += f'description: {description}\n'
|
| 524 |
-
|
| 525 |
-
if rule_type == 'Auto Attached' and globs:
|
| 526 |
-
mdc += f'globs: {globs}\n'
|
| 527 |
-
|
| 528 |
-
if rule_type == 'Always':
|
| 529 |
-
mdc += 'alwaysApply: true\n'
|
| 530 |
-
else:
|
| 531 |
-
mdc += 'alwaysApply: false\n'
|
| 532 |
-
|
| 533 |
-
mdc += '---\n\n'
|
| 534 |
-
mdc += content + '\n'
|
| 535 |
-
|
| 536 |
-
# Add referenced files
|
| 537 |
-
if referenced_files:
|
| 538 |
-
mdc += '\n' + referenced_files
|
| 539 |
-
|
| 540 |
-
return mdc
|
| 541 |
-
|
| 542 |
-
# OpenRouter Adapter
|
| 543 |
-
class OpenRouterAdapter(LLMAdapter):
|
| 544 |
-
"""Adapter for OpenRouter API."""
|
| 545 |
-
|
| 546 |
-
def __init__(self):
|
| 547 |
-
"""Initialize the OpenRouter adapter."""
|
| 548 |
-
self.api_key = None
|
| 549 |
-
self.api_url = Settings.OPENROUTER_API_URL
|
| 550 |
-
self.initialized = False
|
| 551 |
-
self.last_error = None
|
| 552 |
-
|
| 553 |
-
def initialize(self, api_key: str, **kwargs) -> None:
|
| 554 |
-
"""Initialize the adapter with API key and optional parameters."""
|
| 555 |
-
self.api_key = api_key
|
| 556 |
-
self.api_url = kwargs.get('api_url', Settings.OPENROUTER_API_URL)
|
| 557 |
-
self.site_url = kwargs.get('site_url', 'https://cursor-rules-generator.example.com')
|
| 558 |
-
self.site_name = kwargs.get('site_name', 'Cursor Rules Generator')
|
| 559 |
-
self.initialized = True
|
| 560 |
-
|
| 561 |
-
def validate_api_key(self, api_key: str) -> bool:
|
| 562 |
-
"""Validate the OpenRouter API key."""
|
| 563 |
-
try:
|
| 564 |
-
# Try to list models with the provided API key
|
| 565 |
-
url = f"{self.api_url}/models"
|
| 566 |
-
headers = {
|
| 567 |
-
"Authorization": f"Bearer {api_key}"
|
| 568 |
-
}
|
| 569 |
-
response = requests.get(url, headers=headers)
|
| 570 |
-
|
| 571 |
-
# Check if the request was successful
|
| 572 |
-
if response.status_code == 200:
|
| 573 |
-
return True
|
| 574 |
-
|
| 575 |
-
# Store error details for debugging
|
| 576 |
-
self.last_error = f"API Error: Status {response.status_code}, Response: {response.text}"
|
| 577 |
-
print(f"OpenRouter API validation failed: {self.last_error}")
|
| 578 |
-
return False
|
| 579 |
-
except Exception as e:
|
| 580 |
-
# Store exception details for debugging
|
| 581 |
-
self.last_error = f"Exception: {str(e)}\n{traceback.format_exc()}"
|
| 582 |
-
print(f"OpenRouter API validation exception: {self.last_error}")
|
| 583 |
-
return False
|
| 584 |
-
|
| 585 |
-
def get_available_models(self) -> List[Dict[str, str]]:
|
| 586 |
-
"""Get a list of available OpenRouter models."""
|
| 587 |
-
if not self.initialized:
|
| 588 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 589 |
-
|
| 590 |
-
try:
|
| 591 |
-
# Get available models
|
| 592 |
-
url = f"{self.api_url}/models"
|
| 593 |
-
headers = {
|
| 594 |
-
"Authorization": f"Bearer {self.api_key}"
|
| 595 |
-
}
|
| 596 |
-
response = requests.get(url, headers=headers)
|
| 597 |
-
|
| 598 |
-
if response.status_code != 200:
|
| 599 |
-
print(f"Failed to get models: Status {response.status_code}, Response: {response.text}")
|
| 600 |
-
raise ValueError(f"Failed to get models: {response.text}")
|
| 601 |
-
|
| 602 |
-
data = response.json()
|
| 603 |
-
|
| 604 |
-
# Format the response
|
| 605 |
-
models = []
|
| 606 |
-
for model in data.get('data', []):
|
| 607 |
-
model_id = model.get('id')
|
| 608 |
-
model_name = model.get('name', model_id)
|
| 609 |
-
|
| 610 |
-
# Skip non-chat models
|
| 611 |
-
if not model.get('capabilities', {}).get('chat'):
|
| 612 |
-
continue
|
| 613 |
-
|
| 614 |
-
models.append({
|
| 615 |
-
'id': model_id,
|
| 616 |
-
'name': model_name
|
| 617 |
-
})
|
| 618 |
-
|
| 619 |
-
# If no models found, return default models
|
| 620 |
-
if not models:
|
| 621 |
-
models = [
|
| 622 |
-
{'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
|
| 623 |
-
{'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
|
| 624 |
-
{'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
|
| 625 |
-
{'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
|
| 626 |
-
]
|
| 627 |
-
|
| 628 |
-
return models
|
| 629 |
-
except Exception as e:
|
| 630 |
-
print(f"Exception in get_available_models: {str(e)}\n{traceback.format_exc()}")
|
| 631 |
-
# Return default models on error
|
| 632 |
-
return [
|
| 633 |
-
{'id': 'openai/gpt-4o', 'name': 'OpenAI GPT-4o'},
|
| 634 |
-
{'id': 'anthropic/claude-3-opus', 'name': 'Anthropic Claude 3 Opus'},
|
| 635 |
-
{'id': 'google/gemini-2.5-pro', 'name': 'Google Gemini 2.5 Pro'},
|
| 636 |
-
{'id': 'meta-llama/llama-3-70b-instruct', 'name': 'Meta Llama 3 70B'}
|
| 637 |
-
]
|
| 638 |
-
|
| 639 |
-
def generate_rule(
|
| 640 |
-
self,
|
| 641 |
-
model: str,
|
| 642 |
-
rule_type: str,
|
| 643 |
-
description: str,
|
| 644 |
-
content: str,
|
| 645 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 646 |
-
) -> str:
|
| 647 |
-
"""Generate a Cursor Rule using OpenRouter."""
|
| 648 |
-
if not self.initialized:
|
| 649 |
-
raise ValueError("Adapter not initialized. Call initialize() first.")
|
| 650 |
-
|
| 651 |
-
# Set default parameters if not provided
|
| 652 |
-
if parameters is None:
|
| 653 |
-
parameters = {}
|
| 654 |
-
|
| 655 |
-
# Extract parameters
|
| 656 |
-
temperature = parameters.get('temperature', Settings.DEFAULT_TEMPERATURE)
|
| 657 |
-
globs = parameters.get('globs', '')
|
| 658 |
-
referenced_files = parameters.get('referenced_files', '')
|
| 659 |
-
prompt = parameters.get('prompt', '')
|
| 660 |
-
|
| 661 |
-
# Prepare the prompt for OpenRouter
|
| 662 |
-
system_prompt = """
|
| 663 |
-
You are a Cursor Rules expert. Create a rule in MDC format based on the provided information.
|
| 664 |
-
|
| 665 |
-
MDC format example:
|
| 666 |
-
---
|
| 667 |
-
description: RPC Service boilerplate
|
| 668 |
-
globs:
|
| 669 |
-
alwaysApply: false
|
| 670 |
-
---
|
| 671 |
-
|
| 672 |
-
- Use our internal RPC pattern when defining services
|
| 673 |
-
- Always use snake_case for service names.
|
| 674 |
-
|
| 675 |
-
@service-template.ts
|
| 676 |
-
"""
|
| 677 |
-
|
| 678 |
-
user_prompt = f"""
|
| 679 |
-
Create a Cursor Rule with the following details:
|
| 680 |
-
|
| 681 |
-
Rule Type: {rule_type}
|
| 682 |
-
Description: {description}
|
| 683 |
-
Content: {content}
|
| 684 |
-
"""
|
| 685 |
-
|
| 686 |
-
if globs:
|
| 687 |
-
user_prompt += f"\nGlobs: {globs}"
|
| 688 |
-
|
| 689 |
-
if referenced_files:
|
| 690 |
-
user_prompt += f"\nReferenced Files: {referenced_files}"
|
| 691 |
-
|
| 692 |
-
if prompt:
|
| 693 |
-
user_prompt += f"\nAdditional Instructions: {prompt}"
|
| 694 |
-
|
| 695 |
-
# Prepare the API request
|
| 696 |
-
url = f"{self.api_url}/chat/completions"
|
| 697 |
-
headers = {
|
| 698 |
-
"Authorization": f"Bearer {self.api_key}",
|
| 699 |
-
"Content-Type": "application/json",
|
| 700 |
-
"HTTP-Referer": self.site_url,
|
| 701 |
-
"X-Title": self.site_name
|
| 702 |
-
}
|
| 703 |
-
|
| 704 |
-
payload = {
|
| 705 |
-
"model": model,
|
| 706 |
-
"messages": [
|
| 707 |
-
{
|
| 708 |
-
"role": "system",
|
| 709 |
-
"content": system_prompt
|
| 710 |
-
},
|
| 711 |
-
{
|
| 712 |
-
"role": "user",
|
| 713 |
-
"content": user_prompt
|
| 714 |
-
}
|
| 715 |
-
],
|
| 716 |
-
"temperature": temperature,
|
| 717 |
-
"max_tokens": 2048
|
| 718 |
-
}
|
| 719 |
-
|
| 720 |
-
# Make the API request
|
| 721 |
-
try:
|
| 722 |
-
response = requests.post(url, headers=headers, json=payload)
|
| 723 |
-
|
| 724 |
-
if response.status_code != 200:
|
| 725 |
-
print(f"Failed to generate rule: Status {response.status_code}, Response: {response.text}")
|
| 726 |
-
raise ValueError(f"Failed to generate rule: {response.text}")
|
| 727 |
-
|
| 728 |
-
data = response.json()
|
| 729 |
-
|
| 730 |
-
# Extract the generated text
|
| 731 |
-
generated_text = data.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 732 |
-
|
| 733 |
-
# If no text was generated, create a basic rule
|
| 734 |
-
if not generated_text:
|
| 735 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 736 |
-
|
| 737 |
-
return generated_text
|
| 738 |
-
except Exception as e:
|
| 739 |
-
print(f"Exception in generate_rule: {str(e)}\n{traceback.format_exc()}")
|
| 740 |
-
# Create a basic rule on error
|
| 741 |
-
return self._create_basic_rule(rule_type, description, content, globs, referenced_files)
|
| 742 |
-
|
| 743 |
-
def _create_basic_rule(
|
| 744 |
-
self,
|
| 745 |
-
rule_type: str,
|
| 746 |
-
description: str,
|
| 747 |
-
content: str,
|
| 748 |
-
globs: str = '',
|
| 749 |
-
referenced_files: str = ''
|
| 750 |
-
) -> str:
|
| 751 |
-
"""Create a basic rule in MDC format without using the LLM."""
|
| 752 |
-
# Create MDC format
|
| 753 |
-
mdc = '---\n'
|
| 754 |
-
mdc += f'description: {description}\n'
|
| 755 |
-
|
| 756 |
-
if rule_type == 'Auto Attached' and globs:
|
| 757 |
-
mdc += f'globs: {globs}\n'
|
| 758 |
-
|
| 759 |
-
if rule_type == 'Always':
|
| 760 |
-
mdc += 'alwaysApply: true\n'
|
| 761 |
-
else:
|
| 762 |
-
mdc += 'alwaysApply: false\n'
|
| 763 |
-
|
| 764 |
-
mdc += '---\n\n'
|
| 765 |
-
mdc += content + '\n'
|
| 766 |
-
|
| 767 |
-
# Add referenced files
|
| 768 |
-
if referenced_files:
|
| 769 |
-
mdc += '\n' + referenced_files
|
| 770 |
-
|
| 771 |
-
return mdc
|
| 772 |
-
|
| 773 |
-
# LLM Adapter Factory
|
| 774 |
-
class LLMAdapterFactory:
|
| 775 |
-
"""Factory for creating LLM adapters."""
|
| 776 |
-
|
| 777 |
-
@staticmethod
|
| 778 |
-
def create_adapter(provider_name: str) -> LLMAdapter:
|
| 779 |
-
"""Create an adapter for the specified provider."""
|
| 780 |
-
provider_name = provider_name.lower()
|
| 781 |
-
|
| 782 |
-
if provider_name == "gemini":
|
| 783 |
-
return GeminiAdapter()
|
| 784 |
-
elif provider_name == "openai":
|
| 785 |
-
return OpenAIAdapter()
|
| 786 |
-
elif provider_name == "openrouter":
|
| 787 |
-
return OpenRouterAdapter()
|
| 788 |
-
else:
|
| 789 |
-
raise ValueError(f"Unsupported provider: {provider_name}")
|
| 790 |
-
|
| 791 |
-
@staticmethod
|
| 792 |
-
def get_supported_providers() -> Dict[str, str]:
|
| 793 |
-
"""Get a dictionary of supported providers."""
|
| 794 |
-
return {
|
| 795 |
-
"gemini": "Google Gemini",
|
| 796 |
-
"openai": "OpenAI",
|
| 797 |
-
"openrouter": "OpenRouter"
|
| 798 |
-
}
|
| 799 |
-
|
| 800 |
-
# Rule Generator
|
| 801 |
-
class RuleGenerator:
|
| 802 |
-
"""Engine for generating Cursor Rules."""
|
| 803 |
-
|
| 804 |
-
def __init__(self):
|
| 805 |
-
"""Initialize the rule generator."""
|
| 806 |
-
self.factory = LLMAdapterFactory()
|
| 807 |
-
|
| 808 |
-
def create_rule(
|
| 809 |
-
self,
|
| 810 |
-
provider: str,
|
| 811 |
-
model: str,
|
| 812 |
-
rule_type: str,
|
| 813 |
-
description: str,
|
| 814 |
-
content: str,
|
| 815 |
-
api_key: str,
|
| 816 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 817 |
-
) -> str:
|
| 818 |
-
"""Create a Cursor Rule using the specified LLM provider."""
|
| 819 |
-
# Set default parameters if not provided
|
| 820 |
-
if parameters is None:
|
| 821 |
-
parameters = {}
|
| 822 |
-
|
| 823 |
-
try:
|
| 824 |
-
# Create and initialize the adapter
|
| 825 |
-
adapter = self.factory.create_adapter(provider)
|
| 826 |
-
adapter.initialize(api_key)
|
| 827 |
-
|
| 828 |
-
# Generate the rule using the adapter
|
| 829 |
-
rule = adapter.generate_rule(model, rule_type, description, content, parameters)
|
| 830 |
-
|
| 831 |
-
return rule
|
| 832 |
-
except Exception as e:
|
| 833 |
-
print(f"Exception in create_rule: {str(e)}\n{traceback.format_exc()}")
|
| 834 |
-
# If LLM generation fails, create a basic rule
|
| 835 |
-
return self._create_basic_rule(rule_type, description, content, parameters)
|
| 836 |
-
|
| 837 |
-
def _create_basic_rule(
|
| 838 |
-
self,
|
| 839 |
-
rule_type: str,
|
| 840 |
-
description: str,
|
| 841 |
-
content: str,
|
| 842 |
-
parameters: Optional[Dict[str, Any]] = None
|
| 843 |
-
) -> str:
|
| 844 |
-
"""Create a basic rule in MDC format without using an LLM."""
|
| 845 |
-
# Set default parameters if not provided
|
| 846 |
-
if parameters is None:
|
| 847 |
-
parameters = {}
|
| 848 |
-
|
| 849 |
-
# Extract parameters
|
| 850 |
-
globs = parameters.get('globs', '')
|
| 851 |
-
referenced_files = parameters.get('referenced_files', '')
|
| 852 |
-
|
| 853 |
-
# Create MDC format
|
| 854 |
-
mdc = '---\n'
|
| 855 |
-
mdc += f'description: {description}\n'
|
| 856 |
-
|
| 857 |
-
if rule_type == 'Auto Attached' and globs:
|
| 858 |
-
mdc += f'globs: {globs}\n'
|
| 859 |
-
|
| 860 |
-
if rule_type == 'Always':
|
| 861 |
-
mdc += 'alwaysApply: true\n'
|
| 862 |
-
else:
|
| 863 |
-
mdc += 'alwaysApply: false\n'
|
| 864 |
-
|
| 865 |
-
mdc += '---\n\n'
|
| 866 |
-
mdc += content + '\n'
|
| 867 |
-
|
| 868 |
-
# Add referenced files
|
| 869 |
-
if referenced_files:
|
| 870 |
-
mdc += '\n' + referenced_files
|
| 871 |
-
|
| 872 |
-
return mdc
|
| 873 |
-
|
| 874 |
-
def validate_rule_type(self, rule_type: str) -> bool:
|
| 875 |
-
"""Validate if the rule type is supported."""
|
| 876 |
-
valid_types = ['Always', 'Auto Attached', 'Agent Requested', 'Manual']
|
| 877 |
-
return rule_type in valid_types
|
| 878 |
-
|
| 879 |
-
def get_rule_types(self) -> List[Dict[str, str]]:
|
| 880 |
-
"""Get a list of supported rule types."""
|
| 881 |
-
return [
|
| 882 |
-
{
|
| 883 |
-
'id': 'Always',
|
| 884 |
-
'name': 'Always',
|
| 885 |
-
'description': 'Always included in the model context'
|
| 886 |
-
},
|
| 887 |
-
{
|
| 888 |
-
'id': 'Auto Attached',
|
| 889 |
-
'name': 'Auto Attached',
|
| 890 |
-
'description': 'Included when files matching glob patterns are referenced'
|
| 891 |
-
},
|
| 892 |
-
{
|
| 893 |
-
'id': 'Agent Requested',
|
| 894 |
-
'name': 'Agent Requested',
|
| 895 |
-
'description': 'Rule is presented to the AI, which decides whether to include it'
|
| 896 |
-
},
|
| 897 |
-
{
|
| 898 |
-
'id': 'Manual',
|
| 899 |
-
'name': 'Manual',
|
| 900 |
-
'description': 'Only included when explicitly referenced using @ruleName'
|
| 901 |
-
}
|
| 902 |
-
]
|
| 903 |
-
|
| 904 |
-
# Initialize components
|
| 905 |
-
rule_generator = RuleGenerator()
|
| 906 |
-
factory = LLMAdapterFactory()
|
| 907 |
-
|
| 908 |
-
# Get supported providers
|
| 909 |
-
providers = factory.get_supported_providers()
|
| 910 |
-
provider_choices = list(providers.keys())
|
| 911 |
-
|
| 912 |
-
# Get rule types
|
| 913 |
-
rule_types = rule_generator.get_rule_types()
|
| 914 |
-
rule_type_choices = [rt['id'] for rt in rule_types]
|
| 915 |
-
|
| 916 |
-
def validate_api_key(provider, api_key):
|
| 917 |
-
"""Validate an API key for a specific provider.
|
| 918 |
-
|
| 919 |
-
Args:
|
| 920 |
-
provider: The LLM provider
|
| 921 |
-
api_key: The API key to validate
|
| 922 |
-
|
| 923 |
-
Returns:
|
| 924 |
-
tuple: (success, message, models)
|
| 925 |
-
"""
|
| 926 |
-
if not provider or not api_key:
|
| 927 |
-
return False, "Lütfen bir sağlayıcı seçin ve API anahtarı girin.", [], []
|
| 928 |
-
|
| 929 |
-
try:
|
| 930 |
-
# Create the adapter
|
| 931 |
-
adapter = factory.create_adapter(provider)
|
| 932 |
-
|
| 933 |
-
# Print debug info
|
| 934 |
-
print(f"Validating {provider} API key: {api_key[:5]}...{api_key[-5:] if len(api_key) > 10 else ''}")
|
| 935 |
-
|
| 936 |
-
# Validate the API key
|
| 937 |
-
valid = adapter.validate_api_key(api_key)
|
| 938 |
-
|
| 939 |
-
if valid:
|
| 940 |
-
# Initialize the adapter
|
| 941 |
-
adapter.initialize(api_key)
|
| 942 |
-
|
| 943 |
-
# Get available models
|
| 944 |
-
models = adapter.get_available_models()
|
| 945 |
-
model_names = [model['name'] for model in models]
|
| 946 |
-
model_ids = [model['id'] for model in models]
|
| 947 |
-
|
| 948 |
-
return True, "API anahtarı doğrulandı.", model_names, model_ids
|
| 949 |
-
else:
|
| 950 |
-
error_msg = getattr(adapter, 'last_error', 'Bilinmeyen hata')
|
| 951 |
-
return False, f"Geçersiz API anahtarı. Hata: {error_msg}", [], []
|
| 952 |
-
except Exception as e:
|
| 953 |
-
error_details = traceback.format_exc()
|
| 954 |
-
print(f"Exception in validate_api_key: {str(e)}\n{error_details}")
|
| 955 |
-
return False, f"Hata: {str(e)}", [], []
|
| 956 |
-
|
| 957 |
-
def generate_rule(provider, api_key, model_index, model_ids, rule_type, description, content, globs, referenced_files, prompt, temperature):
|
| 958 |
-
"""Generate a Cursor Rule.
|
| 959 |
-
|
| 960 |
-
Args:
|
| 961 |
-
provider: The LLM provider
|
| 962 |
-
api_key: The API key for the provider
|
| 963 |
-
model_index: The index of the selected model
|
| 964 |
-
model_ids: The list of model IDs
|
| 965 |
-
rule_type: The type of rule to generate
|
| 966 |
-
description: A short description of the rule's purpose
|
| 967 |
-
content: The main content of the rule
|
| 968 |
-
globs: Glob patterns for Auto Attached rules
|
| 969 |
-
referenced_files: Referenced files
|
| 970 |
-
prompt: Additional instructions for the LLM
|
| 971 |
-
temperature: Temperature parameter for generation
|
| 972 |
-
|
| 973 |
-
Returns:
|
| 974 |
-
tuple: (success, message, rule)
|
| 975 |
-
"""
|
| 976 |
-
if not provider or not api_key or model_index is None or not rule_type or not description or not content:
|
| 977 |
-
return False, "Lütfen tüm gerekli alanları doldurun.", ""
|
| 978 |
-
|
| 979 |
-
# Get the model ID
|
| 980 |
-
if not model_ids or model_index >= len(model_ids):
|
| 981 |
-
return False, "Geçersiz model seçimi.", ""
|
| 982 |
-
|
| 983 |
-
model = model_ids[model_index]
|
| 984 |
-
|
| 985 |
-
# Validate rule type
|
| 986 |
-
if not rule_generator.validate_rule_type(rule_type):
|
| 987 |
-
return False, f"Geçersiz kural tipi: {rule_type}", ""
|
| 988 |
-
|
| 989 |
-
# Validate globs for Auto Attached rule type
|
| 990 |
-
if rule_type == 'Auto Attached' and not globs:
|
| 991 |
-
return False, "Auto Attached kural tipi için glob desenleri gereklidir.", ""
|
| 992 |
-
|
| 993 |
-
try:
|
| 994 |
-
# Prepare parameters
|
| 995 |
-
parameters = {
|
| 996 |
-
'globs': globs,
|
| 997 |
-
'referenced_files': referenced_files,
|
| 998 |
-
'prompt': prompt,
|
| 999 |
-
'temperature': float(temperature)
|
| 1000 |
-
}
|
| 1001 |
-
|
| 1002 |
-
# Generate the rule
|
| 1003 |
-
rule = rule_generator.create_rule(
|
| 1004 |
-
provider=provider,
|
| 1005 |
-
model=model,
|
| 1006 |
-
rule_type=rule_type,
|
| 1007 |
-
description=description,
|
| 1008 |
-
content=content,
|
| 1009 |
-
api_key=api_key,
|
| 1010 |
-
parameters=parameters
|
| 1011 |
-
)
|
| 1012 |
-
|
| 1013 |
-
return True, "Kural başarıyla oluşturuldu.", rule
|
| 1014 |
-
except Exception as e:
|
| 1015 |
-
error_details = traceback.format_exc()
|
| 1016 |
-
print(f"Exception in generate_rule: {str(e)}\n{error_details}")
|
| 1017 |
-
return False, f"Kural oluşturulurken bir hata oluştu: {str(e)}", ""
|
| 1018 |
-
|
| 1019 |
-
def update_rule_type_info(rule_type):
|
| 1020 |
-
"""Update the rule type information.
|
| 1021 |
-
|
| 1022 |
-
Args:
|
| 1023 |
-
rule_type: The selected rule type
|
| 1024 |
-
|
| 1025 |
-
Returns:
|
| 1026 |
-
str: Information about the selected rule type
|
| 1027 |
-
"""
|
| 1028 |
-
if rule_type == 'Always':
|
| 1029 |
-
return "Her zaman model bağlamına dahil edilir."
|
| 1030 |
-
elif rule_type == 'Auto Attached':
|
| 1031 |
-
return "Glob desenine uyan dosyalar referans alındığında dahil edilir."
|
| 1032 |
-
elif rule_type == 'Agent Requested':
|
| 1033 |
-
return "Kural AI'ya sunulur, dahil edilip edilmeyeceğine AI karar verir."
|
| 1034 |
-
elif rule_type == 'Manual':
|
| 1035 |
-
return "Yalnızca @ruleName kullanılarak açıkça belirtildiğinde dahil edilir."
|
| 1036 |
-
else:
|
| 1037 |
-
return ""
|
| 1038 |
-
|
| 1039 |
-
def update_globs_visibility(rule_type):
|
| 1040 |
-
"""Update the visibility of the globs input.
|
| 1041 |
-
|
| 1042 |
-
Args:
|
| 1043 |
-
rule_type: The selected rule type
|
| 1044 |
-
|
| 1045 |
-
Returns:
|
| 1046 |
-
bool: Whether the globs input should be visible
|
| 1047 |
-
"""
|
| 1048 |
-
return rule_type == 'Auto Attached'
|
| 1049 |
-
|
| 1050 |
-
# Create Gradio interface
|
| 1051 |
-
with gr.Blocks(title="Cursor Rules Oluşturucu") as demo:
|
| 1052 |
-
gr.Markdown("# Cursor Rules Oluşturucu")
|
| 1053 |
-
gr.Markdown("Gemini, OpenRouter, OpenAI API ve tüm modellerini destekleyen dinamik bir Cursor Rules oluşturucu.")
|
| 1054 |
-
|
| 1055 |
-
with gr.Row():
|
| 1056 |
-
with gr.Column():
|
| 1057 |
-
provider = gr.Dropdown(
|
| 1058 |
-
choices=provider_choices,
|
| 1059 |
-
label="LLM Sağlayıcı",
|
| 1060 |
-
value=provider_choices[0] if provider_choices else None
|
| 1061 |
-
)
|
| 1062 |
-
|
| 1063 |
-
api_key = gr.Textbox(
|
| 1064 |
-
label="API Anahtarı",
|
| 1065 |
-
placeholder="API anahtarınızı girin",
|
| 1066 |
-
type="password"
|
| 1067 |
-
)
|
| 1068 |
-
|
| 1069 |
-
validate_btn = gr.Button("API Anahtarını Doğrula")
|
| 1070 |
-
|
| 1071 |
-
api_status = gr.Textbox(
|
| 1072 |
-
label="API Durumu",
|
| 1073 |
-
interactive=False
|
| 1074 |
-
)
|
| 1075 |
-
|
| 1076 |
-
model_dropdown = gr.Dropdown(
|
| 1077 |
-
label="Model",
|
| 1078 |
-
choices=[],
|
| 1079 |
-
interactive=False
|
| 1080 |
-
)
|
| 1081 |
-
|
| 1082 |
-
# Hidden field to store model IDs
|
| 1083 |
-
model_ids = gr.State([])
|
| 1084 |
-
|
| 1085 |
-
rule_type = gr.Dropdown(
|
| 1086 |
-
choices=rule_type_choices,
|
| 1087 |
-
label="Kural Tipi",
|
| 1088 |
-
value=rule_type_choices[0] if rule_type_choices else None
|
| 1089 |
-
)
|
| 1090 |
-
|
| 1091 |
-
rule_type_info = gr.Textbox(
|
| 1092 |
-
label="Kural Tipi Bilgisi",
|
| 1093 |
-
interactive=False,
|
| 1094 |
-
value=update_rule_type_info(rule_type_choices[0] if rule_type_choices else "")
|
| 1095 |
-
)
|
| 1096 |
-
|
| 1097 |
-
description = gr.Textbox(
|
| 1098 |
-
label="Açıklama",
|
| 1099 |
-
placeholder="Kuralın amacını açıklayan kısa bir açıklama"
|
| 1100 |
-
)
|
| 1101 |
-
|
| 1102 |
-
globs = gr.Textbox(
|
| 1103 |
-
label="Glob Desenleri (Auto Attached için)",
|
| 1104 |
-
placeholder="Örn: *.ts, src/*.js",
|
| 1105 |
-
visible=False
|
| 1106 |
-
)
|
| 1107 |
-
|
| 1108 |
-
content = gr.Textbox(
|
| 1109 |
-
label="Kural İçeriği",
|
| 1110 |
-
placeholder="Kuralın ana içeriği",
|
| 1111 |
-
lines=10
|
| 1112 |
-
)
|
| 1113 |
-
|
| 1114 |
-
referenced_files = gr.Textbox(
|
| 1115 |
-
label="Referans Dosyaları (İsteğe bağlı)",
|
| 1116 |
-
placeholder="Her satıra bir dosya adı girin, örn: @service-template.ts",
|
| 1117 |
-
lines=3
|
| 1118 |
-
)
|
| 1119 |
-
|
| 1120 |
-
prompt = gr.Textbox(
|
| 1121 |
-
label="AI Prompt (İsteğe bağlı)",
|
| 1122 |
-
placeholder="AI'ya özel talimatlar verin",
|
| 1123 |
-
lines=3
|
| 1124 |
-
)
|
| 1125 |
-
|
| 1126 |
-
temperature = gr.Slider(
|
| 1127 |
-
label="Sıcaklık",
|
| 1128 |
-
minimum=0.0,
|
| 1129 |
-
maximum=1.0,
|
| 1130 |
-
value=0.7,
|
| 1131 |
-
step=0.1
|
| 1132 |
-
)
|
| 1133 |
-
|
| 1134 |
-
generate_btn = gr.Button("Kural Oluştur")
|
| 1135 |
-
|
| 1136 |
-
with gr.Column():
|
| 1137 |
-
generation_status = gr.Textbox(
|
| 1138 |
-
label="Durum",
|
| 1139 |
-
interactive=False
|
| 1140 |
-
)
|
| 1141 |
-
|
| 1142 |
-
rule_output = gr.Textbox(
|
| 1143 |
-
label="Oluşturulan Kural",
|
| 1144 |
-
lines=20,
|
| 1145 |
-
interactive=False
|
| 1146 |
-
)
|
| 1147 |
-
|
| 1148 |
-
download_btn = gr.Button("İndir")
|
| 1149 |
-
|
| 1150 |
-
# API key validation
|
| 1151 |
-
validate_btn.click(
|
| 1152 |
-
fn=validate_api_key,
|
| 1153 |
-
inputs=[provider, api_key],
|
| 1154 |
-
outputs=[api_status, model_dropdown, model_ids]
|
| 1155 |
-
)
|
| 1156 |
-
|
| 1157 |
-
# Rule type change
|
| 1158 |
-
rule_type.change(
|
| 1159 |
-
fn=update_rule_type_info,
|
| 1160 |
-
inputs=[rule_type],
|
| 1161 |
-
outputs=[rule_type_info]
|
| 1162 |
-
)
|
| 1163 |
-
|
| 1164 |
-
rule_type.change(
|
| 1165 |
-
fn=update_globs_visibility,
|
| 1166 |
-
inputs=[rule_type],
|
| 1167 |
-
outputs=[globs]
|
| 1168 |
-
)
|
| 1169 |
-
|
| 1170 |
-
# Generate rule
|
| 1171 |
-
generate_btn.click(
|
| 1172 |
-
fn=generate_rule,
|
| 1173 |
-
inputs=[
|
| 1174 |
-
provider,
|
| 1175 |
-
api_key,
|
| 1176 |
-
model_dropdown,
|
| 1177 |
-
model_ids,
|
| 1178 |
-
rule_type,
|
| 1179 |
-
description,
|
| 1180 |
-
content,
|
| 1181 |
-
globs,
|
| 1182 |
-
referenced_files,
|
| 1183 |
-
prompt,
|
| 1184 |
-
temperature
|
| 1185 |
-
],
|
| 1186 |
-
outputs=[generation_status, rule_output]
|
| 1187 |
-
)
|
| 1188 |
-
|
| 1189 |
-
# Download rule
|
| 1190 |
-
def download_rule(rule, description):
|
| 1191 |
-
if not rule:
|
| 1192 |
-
return None
|
| 1193 |
-
|
| 1194 |
-
# Create file name from description
|
| 1195 |
-
file_name = description.lower().replace(" ", "-").replace("/", "-")
|
| 1196 |
-
if not file_name:
|
| 1197 |
-
file_name = "cursor-rule"
|
| 1198 |
-
|
| 1199 |
-
return {
|
| 1200 |
-
"name": f"{file_name}.mdc",
|
| 1201 |
-
"data": rule
|
| 1202 |
-
}
|
| 1203 |
-
|
| 1204 |
-
download_btn.click(
|
| 1205 |
-
fn=download_rule,
|
| 1206 |
-
inputs=[rule_output, description],
|
| 1207 |
-
outputs=[gr.File()]
|
| 1208 |
-
)
|
| 1209 |
-
|
| 1210 |
-
# Launch the app
|
| 1211 |
-
if __name__ == "__main__":
|
| 1212 |
-
demo.launch(
|
| 1213 |
-
server_name="0.0.0.0",
|
| 1214 |
-
server_port=int(os.environ.get("PORT", 7860)),
|
| 1215 |
-
share=True
|
| 1216 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|