osbm commited on
Commit
7b7ab95
·
verified ·
1 Parent(s): 0e0ec12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -16
app.py CHANGED
@@ -20,11 +20,7 @@ model = UNet(
20
  model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')))
21
  model.eval()
22
 
23
- def greet(image):
24
-
25
-
26
- # image = Image.open(image_path).convert("RGB")
27
- # image = np.array(image) / 255.0
28
  image = image / 255.0
29
  image = image.astype(np.float32)
30
 
@@ -32,39 +28,34 @@ def greet(image):
32
  A.Resize(height=512, width=512),
33
  ToTensorV2(),
34
  ])
35
- print(image.shape)
36
  image = inference_transforms(image=image)["image"]
37
- print(image.shape)
38
  image = image.unsqueeze(0)
39
 
40
-
41
  with torch.no_grad():
42
  mask_pred = torch.sigmoid(model(image))
43
 
44
- print(image.shape)
45
- print(mask_pred.shape)
46
- print(mask_pred[0, 0, :, :].shape)
47
  return mask_pred[0, 0, :, :].numpy()
48
 
49
 
50
  demo = gr.Interface(
51
- fn=greet,
52
  title="Histapathology segmentation",
53
  inputs=[
54
  gr.Image(
55
  label="Input image",
56
  image_mode="RGB",
57
- # height=400,
58
  type="numpy",
59
- # width=400,
60
  )
61
  ],
62
  outputs=[
63
  gr.Image(
64
  label="Model Prediction",
65
  image_mode="L",
66
- # height=400,
67
- # width=400,
68
  )
69
  ],
70
  # examples=[
 
20
  model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')))
21
  model.eval()
22
 
23
+ def process_image(image):
 
 
 
 
24
  image = image / 255.0
25
  image = image.astype(np.float32)
26
 
 
28
  A.Resize(height=512, width=512),
29
  ToTensorV2(),
30
  ])
31
+
32
  image = inference_transforms(image=image)["image"]
 
33
  image = image.unsqueeze(0)
34
 
 
35
  with torch.no_grad():
36
  mask_pred = torch.sigmoid(model(image))
37
 
 
 
 
38
  return mask_pred[0, 0, :, :].numpy()
39
 
40
 
41
  demo = gr.Interface(
42
+ fn=process_image,
43
  title="Histapathology segmentation",
44
  inputs=[
45
  gr.Image(
46
  label="Input image",
47
  image_mode="RGB",
48
+ height=400,
49
  type="numpy",
50
+ width=400,
51
  )
52
  ],
53
  outputs=[
54
  gr.Image(
55
  label="Model Prediction",
56
  image_mode="L",
57
+ height=400,
58
+ width=400,
59
  )
60
  ],
61
  # examples=[