File size: 1,082 Bytes
dacec36
 
 
93dc552
dacec36
 
93dc552
 
 
 
dacec36
 
 
93dc552
dacec36
 
93dc552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacec36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import spaces
import torch
import vdf_io

zero = torch.Tensor([0]).cuda()
print(zero.device)  # <-- 'cpu' πŸ€”

print(vdf_io.__version__)


@spaces.GPU
def greet(n):
    print(zero.device)  # <-- 'cuda:0' πŸ€—
    return f"Hello {zero + n} Tensor"


def reembed_dataset():
    import datasets
    # model 
    # embeddings = model.embed(ds)
    # new_embeddings = model.reembed(embeddings)

    # datasets.save_dataset(new_embeddings)


def reembed_main():
    download_dataset()
    reembed_dataset()


def download_dataset():
    import datasets

    # ds = datasets.load_dataset()


demo = gr.Interface(
    fn=reembed_main,
    inputs=[
        # dataset name
        gr.inputs.Textbox(label="Dataset name"),
        # embedding model
        gr.inputs.Textbox(label="Embedding model"),
        # output username
        gr.inputs.Textbox(label="Output username"),
    ],
    outputs=gr.outputs.Textbox(label="Output"),
    title="Re-Embedder",
    description="Re-embed a dataset using a given model and output to a new username's account",
)
demo.launch()