import gradio as gr import spaces import torch import vdf_io zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 print(vdf_io.__version__) @spaces.GPU def greet(n): print(zero.device) # <-- 'cuda:0' 🤗 return f"Hello {zero + n} Tensor" def reembed_dataset(): import datasets # model # embeddings = model.embed(ds) # new_embeddings = model.reembed(embeddings) # datasets.save_dataset(new_embeddings) def reembed_main(): download_dataset() reembed_dataset() def download_dataset(): import datasets # ds = datasets.load_dataset() demo = gr.Interface( fn=reembed_main, inputs=[ # dataset name gr.inputs.Textbox(label="Dataset name"), # embedding model gr.inputs.Textbox(label="Embedding model"), # output username gr.inputs.Textbox(label="Output username"), ], outputs=gr.outputs.Textbox(label="Output"), title="Re-Embedder", description="Re-embed a dataset using a given model and output to a new username's account", ) demo.launch()